Menger Curvature - Definition

Definition

Let x, y and z be three points in Rn; for simplicity, assume for the moment that all three points are distinct and do not lie on a single straight line. Let Π ⊆ Rn be the Euclidean plane spanned by x, y and z and let C ⊆ Π be the unique Euclidean circle in Π that passes through x, y and z (the circumcircle of x, y and z). Let R be the radius of C. Then the Menger curvature c(x, y, z) of x, y and z is defined by

If the three points are collinear, R can be informally considered to be +∞, and it makes rigorous sense to define c(x, y, z) = 0. If any of the points x, y and z are coincident, again define c(x, y, z) = 0.

Using the well-known formula relating the side lengths of a triangle to its area, it follows that

where A denotes the area of the triangle spanned by x, y and z.

Another way of computing Menger curvature is the identity

where is the angle made at the y-corner of the triangle spanned by x,y,z.

Menger curvature may also be defined on a general metric space. If X is a metric space and x,y, and z are distinct points, let f be an isometry from into . Define the Menger curvature of these points to be

Note that f need not be defined on all of X, just on {x,y,z}, and the value cX (x,y,z) is independent of the choice of f.

Read more about this topic:  Menger Curvature

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)