MEMO Model - Numerical Solution of The Equation System

Numerical Solution of The Equation System

The discretized equations are solved numerically on a staggered grid, i.e. the scalar quantities, and are defined at the cell centre while the velocity components, and are defined at the centre of the appropriate interfaces.

Temporal discretization of the prognostic equations is based on the explicit second order Adams-Bashforth scheme. There are two deviations from the Adams-Bashforth scheme: The first refers to the implicit treatment of the nonhydrostatic part of the mesoscale pressure perturbation . To ensure non-divergence of the flow field, an elliptic equation is solved. The elliptic equation is derived from the continuity equation wherein velocity components are expressed in terms of . Since the elliptic equation is derived from the discrete form of the continuity equation and the discrete form of the pressure gradient, conservativity is guaranteed (Flassak and Moussiopoulos, 1988). The discrete pressure equation is solved numerically with a fast elliptic solver in conjunction with a generalized conjugate gradient method. The fast elliptic solver is based on fast Fourier analysis in both horizontal directions and Gaussian elimination in the vertical direction (Moussiopoulos and Flassak, 1989).

The second deviation from the explicit treatment is related to the turbulent diffusion in vertical direction. In case of an explicit treatment of this term, the stability requirement may necessitate an unacceptable abridgement of the time increment. To avoid this, vertical turbulent diffusion is treated using the second order Crank–Nicolson method.

On principle, advective terms can be computed using any suitable advection scheme. In the present version of MEMO, a 3-D second-order total-variation-diminishing (TVD) scheme is implemented which is based on the 1-D scheme proposed by Harten (1986). It achieves a fair (but not any) reduction of numerical diffusion, the solution being independent of the magnitude of the scalar (i.e., preserving transportivity).

Read more about this topic:  MEMO Model

Famous quotes containing the words numerical, solution, equation and/or system:

    The moment a mere numerical superiority by either states or voters in this country proceeds to ignore the needs and desires of the minority, and for their own selfish purpose or advancement, hamper or oppress that minority, or debar them in any way from equal privileges and equal rights—that moment will mark the failure of our constitutional system.
    Franklin D. Roosevelt (1882–1945)

    Give a scientist a problem and he will probably provide a solution; historians and sociologists, by contrast, can offer only opinions. Ask a dozen chemists the composition of an organic compound such as methane, and within a short time all twelve will have come up with the same solution of CH4. Ask, however, a dozen economists or sociologists to provide policies to reduce unemployment or the level of crime and twelve widely differing opinions are likely to be offered.
    Derek Gjertsen, British scientist, author. Science and Philosophy: Past and Present, ch. 3, Penguin (1989)

    Jail sentences have many functions, but one is surely to send a message about what our society abhors and what it values. This week, the equation was twofold: female infidelity twice as bad as male abuse, the life of a woman half as valuable as that of a man. The killing of the woman taken in adultery has a long history and survives today in many cultures. One of those is our own.
    Anna Quindlen (b. 1952)

    Television is an excellent system when one has nothing to lose, as is the case with a nomadic and rootless country like the United States, but in Europe the affect of television is that of a bulldozer which reduces culture to the lowest possible denominator.
    Marc Fumaroli (b. 1932)