The Population MAD
The population MAD is defined analogously to the sample MAD, but is based on the complete distribution rather than on a sample. For a symmetric distribution with zero mean, the population MAD is the 75th percentile of the distribution.
Unlike the variance, which may be infinite or undefined, the population MAD is always a finite number. For example, the standard Cauchy distribution has undefined variance, but its MAD is 1.
The earliest known mention of the concept of the MAD occurred in 1816, in a paper by Carl Friedrich Gauss on the determination of the accuracy of numerical observations.
Read more about this topic: Median Absolute Deviation
Famous quotes containing the words population and/or mad:
“I think that cars today are almost the exact equivalent of the great Gothic cathedrals: I mean the supreme creation of an era, conceived with passion by unknown artists, and consumed in image if not in usage by a whole population which appropriates them as a purely magical object.”
—Roland Barthes (19151980)
“The venom clamors of a jealous woman
Poisons more deadly than a mad dogs tooth.”
—William Shakespeare (15641616)