Measurement Uncertainty

In metrology, measurement uncertainty is a non-negative parameter characterizing the dispersion of the values attributed to a measured quantity. The uncertainty has a probabilistic basis and reflects incomplete knowledge of the quantity. All measurements are subject to uncertainty and a measured value is only complete if it is accompanied by a statement of the associated uncertainty. Fractional uncertainty is the measurement uncertainty divided by the measured value.

Codex has guidelines on Measurement Uncertainty, CAC/GL 54-2004.

Read more about Measurement Uncertainty:  Background, Random Errors and Systematic Errors, GUM Approach, Measurement Model, Propagation of Distributions, Type A and Type B Evaluation of Uncertainty, Sensitivity Coefficients, Stages of Uncertainty Evaluation, Models With Any Number of Output Quantities, Joint Committee For Guides in Metrology, Alternative Perspective

Famous quotes containing the words measurement and/or uncertainty:

    That’s the great danger of sectarian opinions, they always accept the formulas of past events as useful for the measurement of future events and they never are, if you have high standards of accuracy.
    John Dos Passos (1896–1970)

    Now, since our condition accommodates things to itself, and transforms them according to itself, we no longer know things in their reality; for nothing comes to us that is not altered and falsified by our Senses. When the compass, the square, and the rule are untrue, all the calculations drawn from them, all the buildings erected by their measure, are of necessity also defective and out of plumb. The uncertainty of our senses renders uncertain everything that they produce.
    Michel de Montaigne (1533–1592)