Marine Mammals and Sonar - Low Frequency Sonar

Low Frequency Sonar

The electromagnetic spectrum has rigid definitions for "super low frequency", "extremely low frequency", "low frequency" and "medium frequency". Acoustics does not have a similar standard. The terms "low" and "mid" have roughly-defined historical meanings in sonar, because not many frequencies have been used over the decades. However, as more experimental sonars have been introduced, the terms have become muddled.

American low frequency sonar was originally introduced to the general public in a June 1961 Time magazine article, New A.S.W. Artemis, the low-frequency sonar used at the time, could fill a whole ocean with searching sound and spot anything sizable that was moving in the water. Artemis grew out of a 1951 suggestion by Harvard physicist Frederick V. Hunt (Artemis is the Ancient Greek goddess of the hunt), who convinced Navy anti-submarine experts that submarines could be detected at great distances only by unheard-of volumes of low-pitched sound. At the time, an entire Artemis system was envisioned to form a sort of underwater DEW (Distant Early Warning) line to warn the U.S. of hostile submarines. Giant, unattended transducers, powered by cables from land, would be lowered to considerable depths where sound travels best. The Time magazine article was published during the maiden voyage of the Soviet submarine K-19, which was the first Soviet submarine equipped with ballistic missiles. Four days later the submarine would have the accident that gave it its nickname. The impact on marine mammals by this system was certainly not a consideration. Artemis never became an operational system.

Low-frequency sonar was revived in the early 1980s for military and research applications. The idea that the sound could interfere with whale biologics became widely discussed outside of research circles when Scripps Institute of Oceanography borrowed and modified a military sonar for the Heard Island Feasibility Test conducted in January and February 1991. The sonar modified for the test was an early version of SURTASS deployed in the MV Cory Chouest. As a result of this test a "Committee on Low-Frequency Sound and Marine Mammals" was organized by the National Research Council. Their findings were published in 1994, in Low-Frequency Sound and Marine Mammals: Current Knowledge and Research Needs.

Long-range transmission does not require high power. All frequencies of sound lose an average of 65dB in the first few seconds before the sound waves strike the ocean bottom. After that the acoustic energy in mid or high-frequency sound is converted into heat, primarily by the epsom salt dissolved in sea water. Very little of low frequency acoustic energy is not converted into heat, so the signal can be detected for long ranges. Fewer than five of the transducers from the low frequency active array were used in the Heard Island Feasibility Test, and the sound was detected on the opposite side of the Earth. The transducers were temporarily altered for this test to transmit sound at 50 hertz, which is lower than their normal operating frequency.

A year after the Heard Island Feasibility Test a new low-frequency active sonar was installed in the Cory Chouest with 18 transducers instead of 10. An environmental impact statement was prepared for that system.

Read more about this topic:  Marine Mammals And Sonar

Famous quotes containing the word frequency:

    The frequency of personal questions grows in direct proportion to your increasing girth. . . . No one would ask a man such a personally invasive question as “Is your wife having natural childbirth or is she planning to be knocked out?” But someone might ask that of you. No matter how much you wish for privacy, your pregnancy is a public event to which everyone feels invited.
    Jean Marzollo (20th century)