Lysine - Biosynthesis

Biosynthesis

As an essential amino acid, lysine is not synthesized in animals, hence it must be ingested as lysine or lysine-containing proteins. In plants and bacteria, it is synthesized from aspartic acid (aspartate):

  • L-aspartate is first converted to L-aspartyl-4-phosphate by aspartokinase (or Aspartate kinase). ATP is needed as an energy source for this step.
  • β-Aspartate semialdehyde dehydrogenase converts this into β-aspartyl-4-semialdehyde (or β-aspartate-4-semialdehyde). Energy from NADPH is used in this conversion.
  • Dihydrodipicolinate synthase adds a pyruvate group to the β-aspartyl-4-semialdehyde, and two water molecules are removed. This causes cyclization and gives rise to 2,3-dihydrodipicolinate.
  • This product is reduced to 2,3,4,5-tetrahydrodipicolinate (or Δ1-piperidine-2,6-dicarboxylate, in the figure: (S)-2,3,4,5-tetrahydropyridine-2,6-dicarboxylate) by dihydrodipicolinate reductase. This reaction consumes a NADPH molecule.
  • Tetrahydrodipicolinate N-acetyltransferase opens this ring and gives rise to N-succinyl-L-2-amino-6-oxoheptanedionate (or N-acyl-2-amino-6-oxopimelate). Two water molecules and one acyl-CoA (succinyl-CoA) enzyme are used in this reaction.
  • N-succinyl-L-2-amino-6-oxoheptanedionate is converted into N-succinyl-LL-2,6-diaminoheptanedionate (N-acyl-2,6-diaminopimelate). This reaction is catalyzed by the enzyme succinyl diaminopimelate aminotransferase. A glutaric acid molecule is used in this reaction and an oxoacid is produced as a byproduct.
  • N-succinyl-LL-2,6-diaminoheptanedionate (N-acyl-2,6-diaminopimelate)is converted into LL-2,6-diaminoheptanedionate (L,L-2,6-diaminopimelate) by succinyl diaminopimelate desuccinylase (acyldiaminopimelate deacylase). A water molecule is consumed in this reaction and a succinate is produced a byproduct.
  • LL-2,6-diaminoheptanedionate is converted by diaminopimelate epimerase into meso-2,6-diamino-heptanedionate (meso-2,6-diaminopimelate).
  • Finally, meso-2,6-diamino-heptanedionate is converted into L-lysine by diaminopimelate decarboxylase.

Enzymes involved in this biosynthesis include:

  1. Aspartokinase
  2. β-Aspartate semialdehyde dehydrogenase
  3. Dihydropicolinate synthase
  4. Δ1-Piperidine-2,6-dicarboxylate dehydrogenase
  5. N-succinyl-2-amino-6ketopimelate synthase
  6. Succinyl diaminopimelate aminotransferase
  7. Succinyl diaminopimelate desuccinylase
  8. Diaminopimelate epimerase
  9. Diaminopimelate decarboxylase.

Read more about this topic:  Lysine