Manufacturing Process
Various methods of heparin depolymerisation are used in the manufacture of low-molecular-weight heparin. These are listed below:
- Oxidative depolymerisation with hydrogen peroxide. Used in the manufacture of ardeparin (Normiflo)
- Deaminative cleavage with isoamyl nitrite. Used in the manufacture of certoparin (Sandoparin)
- Alkaline beta-eliminative cleavage of the benzyl ester of heparin. Used in the manufacture of enoxaparin (Lovenox and Clexane)
- Oxidative depolymerisation with Cu2+ and hydrogen peroxide. Used in the manufacture of parnaparin (Fluxum)
- Beta-eliminative cleavage by the heparinase enzyme. Used in the manufacture of tinzaparin (Innohep and Logiparin)
- Deaminative cleavage with nitrous acid. Used in the manufacture of dalteparin (Fragmin), reviparin (Clivarin), and nadroparin (Fraxiparin)
Deaminative cleavage with nitrous acid results in the formation of an unnatural anhydromannose residue at the reducing terminal of the oligosaccharides produced. This can subsequently be converted to anhydromannitol using a suitable reducing agent as shown in figure 1.
Likewise both chemical and enzymatic beta-elimination result in the formation of an unnatural unsaturated uronate residue(UA) at the non-reducing terminal, as shown in figure 2.
Read more about this topic: Low Molecular Weight Heparin
Famous quotes containing the word process:
“A designer who is not also a couturier, who hasnt learned the most refined mysteries of physically creating his models, is like a sculptor who gives his drawings to another man, an artisan, to accomplish. For him the truncated process of creating will always be an interrupted act of love, and his style will bear the shame of it, the impoverishment.”
—Yves Saint Laurent (b. 1936)