Long-term Depression - Motor Learning and Memory

Motor Learning and Memory

Long-term depression has long been hypothesized to be an important mechanism behind motor learning and memory. Cerebellar LTD is thought to lead to motor learning, and hippocampal LTD is thought to contribute to the decay of memory. However, recent studies have found that hippocampal LTD may not act as the reverse of LTP, but may instead contribute to spatial memory formation. Although LTD is now well characterized, these hypotheses about its contribution to motor learning and memory remain controversial.

Studies have connected deficient cerebellar LTD with impaired motor learning. In one study, metabotropic glutamate receptor 1 mutant mice maintained a normal cerebellar anatomy but had weak LTD and consequently impaired motor learning. However the relationship between cerebellar LTD and motor learning has been seriously challenged. A study on rats and mice proved that normal motor learning occurs while LTD of Purkinje cells is prevented by (1R-1-benzo thiophen-5-yl-2 ethanol hydrochloride (T-588). Likewise, LTD in mice was disrupted using several experimental techniques with no observable deficits in motor learning or performance. These taken together suggest that the correlation between cerebellar LTD and motor learning may have been illusory.

Studies on rats have made a connection between LTD in the hippocampus and memory. In one study, rats were exposed to a novel environment, and homosynaptic LTD in CA1 was observed. After the rats were brought back to their initial environment, LTD activity was lost. It was found that if the rats were exposed to novelty, the electrical stimulation required to depress synaptic transmission was of lower frequency than without novelty. When the rat was put in a novel environment, acetylcholine was released in the hippocampus from the medial septum fiber, resulting in LTD in CA1. Therefore, it has been concluded that acetylcholine facilitates LTD in CA1.

LTD has been correlated with spatial learning in rats, and it is crucial in forming a complete spatial map. It suggested that LTD and LTP work together to encode different aspects of spatial memory.

New evidence suggests that LTP works to encode space, whereas LTD works to encode the features of space. Specifically, it is accepted that encoding of experience takes place on a hierarchy. Encoding of new space is the priority of LTP, while information about orientation in space could be encoded by LTD in the dentate gyrus, and the finer details of space could be encoded by LTD in the CA1.


Read more about this topic:  Long-term Depression

Famous quotes containing the words motor, learning and/or memory:

    What shall we do with country quiet now?
    A motor drones insanely in the blue
    Like a bad bird in a dream.
    Babette Deutsch (1895–1982)

    Learning and teaching should not stand on opposite banks and just watch the river flow by; instead, they should embark together on a journey down the water. Through an active, reciprocal exchange, teaching can strengthen learning how to learn.
    Loris Malaguzzi (1920–1994)

    Canst thou not minister to a mind diseased,
    Pluck from the memory a rooted sorrow,
    Raze out the written troubles of the brain,
    And with some sweet oblivious antidote
    Cleanse the fraught bosom of that perilous stuff
    Which weighs upon the heart?
    William Shakespeare (1564–1616)