Differentiability in Higher Dimensions
See also: Multivariable calculusA function f: Rm → Rn is said to be differentiable at a point x0 if there exists a linear map J: Rm → Rn such that
If a function is differentiable at x0, then all of the partial derivatives must exist at x0, in which case the linear map J is given by the Jacobian matrix. A similar formulation of the higher-dimensional derivative is provided by the fundamental increment lemma found in single-variable calculus.
Note that existence of the partial derivatives (or even all of the directional derivatives) does not guarantee that a function is differentiable at a point. For example, the function ƒ: R2 → R defined by
is not differentiable at (0, 0), but all of the partial derivatives and directional derivatives exist at this point. For a continuous example, the function
is not differentiable at (0, 0), but again all of the partial derivatives and directional derivatives exist.
It is known that if the partial derivatives of a function all exist and are continuous in a neighborhood of a point, then the function must be differentiable at that point, and is in fact of class C1.
Read more about this topic: Local Linearity
Famous quotes containing the words higher and/or dimensions:
“Slavery can only be abolished by raising the character of the people who compose the nation; and that can be done only by showing them a higher one.”
—Maria Weston Chapman (18061885)
“The truth is that a Pigmy and a Patagonian, a Mouse and a Mammoth, derive their dimensions from the same nutritive juices.... [A]ll the manna of heaven would never raise the Mouse to the bulk of the Mammoth.”
—Thomas Jefferson (17431826)