Local-density Approximation - Spin Polarization

Spin Polarization

The extension of density functionals to spin-polarized systems is straightforward for exchange, where the exact spin-scaling is known, but for correlation further approximations must be employed. A spin polarized system in DFT employs two spin-densities, ρα and ρβ with ρ = ρα + ρβ, and the form of the local-spin-density approximation (LSDA) is

For the exchange energy, the exact result (not just for local density approximations) is known in terms of the spin-unpolarized functional:

The spin-dependence of the correlation energy density is approached by introducing the relative spin-polarization:

corresponds to the paramagnetic spin-unpolarized situation with equal and spin densities whereas corresponds to the ferromagnetic situation where one spin density vanishes. The spin correlation energy density for a given values of the total density and relative polarization, εc(ρ,ς), is constructed so to interpolate the extreme values. Several forms have been developed in conjunction with LDA correlation functionals.

Read more about this topic:  Local-density Approximation

Famous quotes containing the word spin:

    Words can have no single fixed meaning. Like wayward electrons, they can spin away from their initial orbit and enter a wider magnetic field. No one owns them or has a proprietary right to dictate how they will be used.
    David Lehman (b. 1948)