List of Integrals of Inverse Trigonometric Functions - Arctangent Function Integration Formulas

Arctangent Function Integration Formulas

\int\arctan(a\,x)\,dx= x\arctan(a\,x)- \frac{\ln\left(a^2\,x^2+1\right)}{2\,a}+C
\int x\arctan(a\,x)\,dx= \frac{x^2\arctan(a\,x)}{2}+ \frac{\arctan(a\,x)}{2\,a^2}-\frac{x}{2\,a}+C
\int x^2\arctan(a\,x)\,dx= \frac{x^3\arctan(a\,x)}{3}+ \frac{\ln\left(a^2\,x^2+1\right)}{6\,a^3}-\frac{x^2}{6\,a}+C
\int x^m\arctan(a\,x)\,dx= \frac{x^{m+1}\arctan(a\,x)}{m+1}- \frac{a}{m+1}\int \frac{x^{m+1}}{a^2\,x^2+1}\,dx\quad(m\ne-1)

Read more about this topic:  List Of Integrals Of Inverse Trigonometric Functions

Famous quotes containing the words function, integration and/or formulas:

    The fact remains that the human being in early childhood learns to consider one or the other aspect of bodily function as evil, shameful, or unsafe. There is not a culture which does not use a combination of these devils to develop, by way of counterpoint, its own style of faith, pride, certainty, and initiative.
    Erik H. Erikson (1904–1994)

    Look back, to slavery, to suffrage, to integration and one thing is clear. Fashions in bigotry come and go. The right thing lasts.
    Anna Quindlen (b. 1952)

    That’s the great danger of sectarian opinions, they always accept the formulas of past events as useful for the measurement of future events and they never are, if you have high standards of accuracy.
    John Dos Passos (1896–1970)