List of Integrals of Inverse Trigonometric Functions - Arcsine Function Integration Formulas

Arcsine Function Integration Formulas

\int\arcsin(a\,x)\,dx= x\arcsin(a\,x)+ \frac{\sqrt{1-a^2\,x^2}}{a}+C
\int x\arcsin(a\,x)\,dx= \frac{x^2\arcsin(a\,x)}{2}- \frac{\arcsin(a\,x)}{4\,a^2}+ \frac{x\sqrt{1-a^2\,x^2}}{4\,a}+C
\int x^2\arcsin(a\,x)\,dx= \frac{x^3\arcsin(a\,x)}{3}+ \frac{\left(a^2\,x^2+2\right)\sqrt{1-a^2\,x^2}}{9\,a^3}+C
\int x^m\arcsin(a\,x)\,dx= \frac{x^{m+1}\arcsin(a\,x)}{m+1}\,-\, \frac{a}{m+1}\int \frac{x^{m+1}}{\sqrt{1-a^2\,x^2}}\,dx\quad(m\ne-1)


\int\arcsin(a\,x)^2\,dx= -2\,x+x\arcsin(a\,x)^2+ \frac{2\sqrt{1-a^2\,x^2}\arcsin(a\,x)}{a}+C
\int\arcsin(a\,x)^n\,dx= x\arcsin(a\,x)^n\,+\, \frac{n\sqrt{1-a^2\,x^2}\arcsin(a\,x)^{n-1}}{a}\,-\, n\,(n-1)\int\arcsin(a\,x)^{n-2}\,dx
\int\arcsin(a\,x)^n\,dx= \frac{x\arcsin(a\,x)^{n+2}}{(n+1)\,(n+2)}\,+\, \frac{\sqrt{1-a^2\,x^2}\arcsin(a\,x)^{n+1}}{a\,(n+1)}\,-\, \frac{1}{(n+1)\,(n+2)}\int\arcsin(a\,x)^{n+2}\,dx\quad(n\ne-1,-2)


Read more about this topic:  List Of Integrals Of Inverse Trigonometric Functions

Famous quotes containing the words function, integration and/or formulas:

    The press and politicians. A delicate relationship. Too close, and danger ensues. Too far apart and democracy itself cannot function without the essential exchange of information. Creative leaks, a discreet lunch, interchange in the Lobby, the art of the unattributable telephone call, late at night.
    Howard Brenton (b. 1942)

    The only phenomenon with which writing has always been concomitant is the creation of cities and empires, that is the integration of large numbers of individuals into a political system, and their grading into castes or classes.... It seems to have favored the exploitation of human beings rather than their enlightenment.
    Claude Lévi-Strauss (b. 1908)

    You treat world history as a mathematician does mathematics, in which nothing but laws and formulas exist, no reality, no good and evil, no time, no yesterday, no tomorrow, nothing but an eternal, shallow, mathematical present.
    Hermann Hesse (1877–1962)