List of Integrals of Inverse Trigonometric Functions - Arcsecant Function Integration Formulas

Arcsecant Function Integration Formulas

\int\arcsec(a\,x)\,dx= x\arcsec(a\,x)- \frac{1}{a}\,\operatorname{artanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x\arcsec(a\,x)\,dx= \frac{x^2\arcsec(a\,x)}{2}- \frac{x}{2\,a}\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x^2\arcsec(a\,x)\,dx= \frac{x^3\arcsec(a\,x)}{3}\,-\, \frac{1}{6\,a^3}\,\operatorname{artanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}\,-\, \frac{x^2}{6\,a}\sqrt{1-\frac{1}{a^2\,x^2}}\,+\,C
\int x^m\arcsec(a\,x)\,dx= \frac{x^{m+1}\arcsec(a\,x)}{m+1}\,-\, \frac{1}{a\,(m+1)}\int \frac{x^{m-1}}{\sqrt{1-\frac{1}{a^2\,x^2}}}\,dx\quad(m\ne-1)


Read more about this topic:  List Of Integrals Of Inverse Trigonometric Functions

Famous quotes containing the words function, integration and/or formulas:

    “... The state’s one function is to give.
    The bud must bloom till blowsy blown
    Its petals loosen and are strown;
    And that’s a fate it can’t evade
    Unless ‘twould rather wilt than fade.”
    Robert Frost (1874–1963)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)

    You treat world history as a mathematician does mathematics, in which nothing but laws and formulas exist, no reality, no good and evil, no time, no yesterday, no tomorrow, nothing but an eternal, shallow, mathematical present.
    Hermann Hesse (1877–1962)