List of Integrals of Inverse Trigonometric Functions - Arccosine Function Integration Formulas

Arccosine Function Integration Formulas

\int\arccos(a\,x)\,dx= x\arccos(a\,x)- \frac{\sqrt{1-a^2\,x^2}}{a}+C
\int x\arccos(a\,x)\,dx= \frac{x^2\arccos(a\,x)}{2}- \frac{\arccos(a\,x)}{4\,a^2}- \frac{x\sqrt{1-a^2\,x^2}}{4\,a}+C
\int x^2\arccos(a\,x)\,dx= \frac{x^3\arccos(a\,x)}{3}- \frac{\left(a^2\,x^2+2\right)\sqrt{1-a^2\,x^2}}{9\,a^3}+C
\int x^m\arccos(a\,x)\,dx= \frac{x^{m+1}\arccos(a\,x)}{m+1}\,+\, \frac{a}{m+1}\int \frac{x^{m+1}}{\sqrt{1-a^2\,x^2}}\,dx\quad(m\ne-1)


\int\arccos(a\,x)^2\,dx= -2\,x+x\arccos(a\,x)^2- \frac{2\sqrt{1-a^2\,x^2}\arccos(a\,x)}{a}+C
\int\arccos(a\,x)^n\,dx= x\arccos(a\,x)^n\,-\, \frac{n\sqrt{1-a^2\,x^2}\arccos(a\,x)^{n-1}}{a}\,-\, n\,(n-1)\int\arccos(a\,x)^{n-2}\,dx
\int\arccos(a\,x)^n\,dx= \frac{x\arccos(a\,x)^{n+2}}{(n+1)\,(n+2)}\,-\, \frac{\sqrt{1-a^2\,x^2}\arccos(a\,x)^{n+1}}{a\,(n+1)}\,-\, \frac{1}{(n+1)\,(n+2)}\int\arccos(a\,x)^{n+2}\,dx\quad(n\ne-1,-2)

Read more about this topic:  List Of Integrals Of Inverse Trigonometric Functions

Famous quotes containing the words function, integration and/or formulas:

    The information links are like nerves that pervade and help to animate the human organism. The sensors and monitors are analogous to the human senses that put us in touch with the world. Data bases correspond to memory; the information processors perform the function of human reasoning and comprehension. Once the postmodern infrastructure is reasonably integrated, it will greatly exceed human intelligence in reach, acuity, capacity, and precision.
    Albert Borgman, U.S. educator, author. Crossing the Postmodern Divide, ch. 4, University of Chicago Press (1992)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)

    You treat world history as a mathematician does mathematics, in which nothing but laws and formulas exist, no reality, no good and evil, no time, no yesterday, no tomorrow, nothing but an eternal, shallow, mathematical present.
    Hermann Hesse (1877–1962)