Lise Meitner - Scientific Career

Scientific Career

Inspired by her teacher, physicist Ludwig Boltzmann, Meitner studied physics and became the second woman to obtain a doctoral degree in physics at the University of Vienna in 1905 ("Wärmeleitung im inhomogenen Körper"). Women were not allowed to attend institutions of higher education in those days, but thanks to support from her parents, she was able to obtain private higher education, which she completed in 1901 with an "externe Matura" examination at the Akademisches Gymnasium. Following the doctoral degree, she rejected an offer to work in a gas lamp factory. Encouraged by her father and backed by his financial support, she went to Berlin. Max Planck allowed her to attend his lectures, an unusual gesture by Planck, who until then had rejected any women wanting to attend his lectures. After one year, Meitner became Planck's assistant. During the first years she worked together with chemist Otto Hahn and discovered with him several new isotopes. In 1909 she presented two papers on beta-radiation.

In 1912 the research group Hahn-Meitner moved to the newly founded Kaiser-Wilhelm-Institut (KWI) in Berlin-Dahlem, south west in Berlin. She worked without salary as a "guest" in Hahn's department of Radiochemistry. It was not until 1913, at 35 years old and following an offer to go to Prague as associate professor, that she got a permanent position at KWI.

In the first part of World War I, she served as a nurse handling X-ray equipment. She returned to Berlin and her research in 1916, but not without inner struggle. She felt in a way ashamed of wanting to continue her research efforts when thinking about the pain and suffering of the victims of war and their medical and emotional needs.

In 1917, she and Hahn discovered the first long-lived isotope of the element protactinium, for which she was awarded the Leibniz Medal by the Berlin Academy of Sciences. That year, Meitner was given her own physics section at the Kaiser Wilhelm Institute for Chemistry.

In 1922, she discovered the cause, known as the Auger effect, of the emission from surfaces of electrons with 'signature' energies. The effect is named for Pierre Victor Auger, a French scientist who independently discovered the effect in 1923.

In 1926, Meitner became the first woman in Germany to assume a post of full professor in physics, at the University of Berlin. There she undertook the research program in nuclear physics which eventually led to her co-discovery of nuclear fission in 1939, after she had left Berlin. She was praised by Albert Einstein as the "German Marie Curie".

In 1930, Meitner taught a seminar on nuclear physics and chemistry with Leó Szilárd. With the discovery of the neutron in the early 1930s, speculation arose in the scientific community that it might be possible to create elements heavier than uranium (atomic number 92) in the laboratory. A scientific race began between Ernest Rutherford in Britain, Irène Joliot-Curie in France, Enrico Fermi in Italy, and the Meitner-Hahn team in Berlin. At the time, all concerned believed that this was abstract research for the probable honour of a Nobel prize. None suspected that this research would culminate in nuclear weapons.

When Adolf Hitler came to power in 1933, Meitner was acting director of the Institute for Chemistry. Although she was protected by her Austrian citizenship, all other Jewish scientists, including her nephew Otto Frisch, Fritz Haber, Leó Szilárd and many other eminent figures, were dismissed or forced to resign from their posts. Most of them emigrated from Germany. Her response was to say nothing and bury herself in her work; she later acknowledged, in 1946, that "It was not only stupid but also very wrong that I did not leave at once."

After the Anschluss, her situation became desperate. In July 1938, Meitner, with help from the Dutch physicists Dirk Coster and Adriaan Fokker, escaped to the Netherlands. She was forced to travel under cover to the Dutch border, where Coster persuaded German immigration officers that she had permission to travel to the Netherlands. She reached safety, though without her possessions. Meitner later said that she left Germany forever with 10 marks in her purse. Before she left, Otto Hahn had given her a diamond ring he had inherited from his mother: this was to be used to bribe the frontier guards if required. It was not required, and Meitner's nephew's wife later wore it.

Meitner was lucky to escape, as Kurt Hess, a chemist who was an avid Nazi, had informed the authorities that she was about to flee. An appointment at the University of Groningen did not come through, and she went instead to Stockholm, where she took up a post at Manne Siegbahn's laboratory, despite the difficulty caused by Siegbahn's prejudice against women in science. Here she established a working relationship with Niels Bohr, who travelled regularly between Copenhagen and Stockholm. She continued to correspond with Hahn and other German scientists.

Read more about this topic:  Lise Meitner

Famous quotes containing the words scientific and/or career:

    Good resolutions are useless attempts to interfere with scientific laws. Their origin is pure vanity. Their result is absolutely nil. They give us, now and then, some of those luxurious sterile emotions that have a certain charm for the weak.... They are simply cheques that men draw on a bank where they have no account.
    Oscar Wilde (1854–1900)

    What exacerbates the strain in the working class is the absence of money to pay for services they need, economic insecurity, poor daycare, and lack of dignity and boredom in each partner’s job. What exacerbates it in upper-middle class is the instability of paid help and the enormous demands of the career system in which both partners become willing believers. But the tug between traditional and egalitarian models of marriage runs from top to bottom of the class ladder.
    Arlie Hochschild (20th century)