Linking Number - Definition

Definition

Any two closed curves in space, if allowed to pass through themselves but not each other, can be moved into exactly one of the following standard positions. This determines the linking number:

linking number -2 linking number -1 linking number 0
linking number 1 linking number 2 linking number 3

Each curve may pass through itself during this motion, but the two curves must remain separated throughout. This is formalized as regular homotopy, which further requires that each curve be an immersion, not just any map. However, this added condition does not change the definition of linking number (it does not matter if the curves are required to always be immersions or not), which is an example of an h-principle (homotopy-principle), meaning that geometry reduces to topology.

Read more about this topic:  Linking Number

Famous quotes containing the word definition:

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)