Limb Darkening

Limb darkening refers to the diminishing of intensity in the image of a star as one moves from the center of the image to the edge or "limb" of the image. Limb darkening occurs as the result of two effects:

  • The density of the star diminishes as the distance from the center increases
  • The temperature of the star diminishes as the distance from the center increases.

Crucial to understanding limb darkening is the idea of optical depth. An optical depth of unity is that thickness of absorbing gas from which a fraction of 1/e photons can escape. This is what defines the visible edge of a star since it is at an optical depth of unity that the star becomes opaque. The radiation reaching us is closely approximated by the sum of all the emission along the entire line of sight, up to that point where the optical depth is unity. When we look near the edge of a star, we cannot "see" to the same depth as when we look at the center because the line of sight must travel at an oblique angle through the stellar gas when looking near the limb. In other words, the solar radius at which we see the optical depth as being unity increases as we move our line of sight towards the limb.

The second effect is the fact that the effective temperature of the stellar atmosphere is (usually) decreasing for an increasing distance from the center of the star. The radiation emitted from a gas is a strongly increasing function of temperature. For a black body, for example, the spectrally integrated intensity is proportional to the fourth power of the temperature (Stefan-Boltzmann law). Since when we look at a star, at first approximation the radiation comes from the point at which the optical depth is unity, and that point is deeper in when looking at the center, the temperature will be higher, and the intensity will be greater, than when we look at the limb.

In fact, the temperature in the atmosphere of a star does not always decrease with increasing height, and for certain spectral lines, the optical depth is unity in a region of increasing temperature. In this case we see the phenomenon of "limb brightening". At very long (IR to radio) and very short (EUV to X-ray) wavelengths the situation becomes much more complicated. A coronal emission such as soft X-radiation will be optically thin and thus be characteristically limb-brightened. Further complication comes from the existence of rough (three-dimensional) structure. The classical analysis of stellar limb darkening, as described below, assumes the existence of a smooth hydrostatic equilibrium, and at some level of precision this assumption must fail (most obviously in sunspots and faculae, but generally everywhere). The analysis of these effects is presently in its infancy because of its computational difficulty .

Read more about Limb Darkening:  Calculation of Limb Darkening

Famous quotes containing the words limb and/or darkening:

    should some limb of the devil
    Destroy the view by cutting down an ash
    That shades the road, or setting up a cottage
    Planned in a government office, shorten his life,
    Manacle his soul upon the Red Sea bottom.
    William Butler Yeats (1865–1939)

    The only asylum
    Was the poorhouse, and those who could afford,
    Rather than send their folks to such a place,
    Kept them at home; and it does seem more human.
    But it’s not so: the place is the asylum.
    There they have every means proper to do with,
    And you aren’t darkening other people’s lives....
    Robert Frost (1874–1963)