Principle
The lifting-line theory makes use of the concept of circulation and of the Kutta–Joukowski theorem,
so that instead of the lift distribution function, the unknown effectively becomes the distribution of circulation over the span, .
|
Modeling the (unknown and sought-after) local lift with the (also unknown) local circulation allows us to account for the influence of one section over its neighbors. In this view, any span-wise change in lift is equivalent to a span-wise change of circulation. According to the Helmholtz theorems, a vortex filament cannot begin or terminate in the air. As such, any span-wise change in lift can be modeled as the shedding of a vortex filament down the flow, behind the wing.
This shed vortex, whose strength is the derivative of the (unknown) local wing circulation distribution, influences the flow left and right of the wing section.
|
This sideways influence (upwash on the outboard, downwash on the inboard) is the key to the lifting-line theory. Now, if the change in lift distribution is known at given lift section, it is possible to predict how that section influences the lift over its neighbors: the vertical induced velocity (upwash or downwash, ) can be quantified using the velocity distribution within a vortex, and related to a change in effective angle of attack over the neighboring sections.
In mathematical terms, the local induced change of angle of attack on a given section can be quantified with the integral sum of the downwash induced by every other wing section. In turn, the integral sum of the lift on each downwashed wing section is equal to the (known) total desired amount of lift.
This leads to an integro-differential equation in the form of where is expressed solely in terms of the wing geometry and its own span-wise variation, . The solution to this equation is a function which accurately describes the circulation (and therefore lift) distribution over a finite wing of known geometry.
Read more about this topic: Lifting-line Theory
Famous quotes containing the word principle:
“Thou art blind to the danger of marrying a woman who feels and acts out the principle of equal rights.”
—Angelina Grimké (18051879)
“Experimental work provides the strongest evidence for scientific realism. This is not because we test hypotheses about entities. It is because entities that in principle cannot be observed are manipulated to produce a new phenomena
[sic] and to investigate other aspects of nature.”
—Ian Hacking (b. 1936)
“Without the Constitution and the Union, we could not have attained the result; but even these, are not the primary cause of our great prosperity. There is something back of these, entwining itself more closely about the human heart. That something, is the principle of Liberty to allMthe principle that clears the path for allgives hope to alland, by consequence, enterprize [sic], and industry to all.”
—Abraham Lincoln (18091865)