Lie Group - The Exponential Map

The Exponential Map

The exponential map from the Lie algebra Mn(R) of the general linear group GLn(R) to GLn(R) is defined by the usual power series:

for matrices A. If G is any subgroup of GLn(R), then the exponential map takes the Lie algebra of G into G, so we have an exponential map for all matrix groups.

The definition above is easy to use, but it is not defined for Lie groups that are not matrix groups, and it is not clear that the exponential map of a Lie group does not depend on its representation as a matrix group. We can solve both problems using a more abstract definition of the exponential map that works for all Lie groups, as follows.

Every vector v in determines a linear map from R to taking 1 to v, which can be thought of as a Lie algebra homomorphism. Because R is the Lie algebra of the simply connected Lie group R, this induces a Lie group homomorphism c : RG so that

for all s and t. The operation on the right hand side is the group multiplication in G. The formal similarity of this formula with the one valid for the exponential function justifies the definition

This is called the exponential map, and it maps the Lie algebra into the Lie group G. It provides a diffeomorphism between a neighborhood of 0 in and a neighborhood of e in G. This exponential map is a generalization of the exponential function for real numbers (because R is the Lie algebra of the Lie group of positive real numbers with multiplication), for complex numbers (because C is the Lie algebra of the Lie group of non-zero complex numbers with multiplication) and for matrices (because Mn(R) with the regular commutator is the Lie algebra of the Lie group GLn(R) of all invertible matrices).

Because the exponential map is surjective on some neighbourhood N of e, it is common to call elements of the Lie algebra infinitesimal generators of the group G. The subgroup of G generated by N is the identity component of G.

The exponential map and the Lie algebra determine the local group structure of every connected Lie group, because of the Baker–Campbell–Hausdorff formula: there exists a neighborhood U of the zero element of, such that for u, v in U we have

where the omitted terms are known and involve Lie brackets of four or more elements. In case u and v commute, this formula reduces to the familiar exponential law exp(u) exp(v) = exp(u + v).

The exponential map from the Lie algebra to the Lie group is not always onto, even if the group is connected (though it does map onto the Lie group for connected groups that are either compact or nilpotent). For example, the exponential map of SL2(R) is not surjective. Also, exponential map is not surjective nor injective for infinite-dimensional (see below) Lie groups modelled on C∞ Fréchet space, even from arbitrary small neighborhood of 0 to corresponding neighborhood of 1.

Read more about this topic:  Lie Group

Famous quotes containing the word map:

    You can always tell a Midwestern couple in Europe because they will be standing in the middle of a busy intersection looking at a wind-blown map and arguing over which way is west. European cities, with their wandering streets and undisciplined alleys, drive Midwesterners practically insane.
    Bill Bryson (b. 1951)