Levi-Civita Connection - Derivative Along Curve

Derivative Along Curve

The Levi-Civita connection (like any affine connection) also defines a derivative along curves, sometimes denoted by D.

Given a smooth curve γ on (M,g) and a vector field V along γ its derivative is defined by

(Formally D is the pullback connection on the pullback bundle γ*TM.)

In particular, is a vector field along the curve γ itself. If vanishes, the curve is called a geodesic of the covariant derivative. If the covariant derivative is the Levi-Civita connection of a certain metric, then the geodesics for the connection are precisely those geodesics of the metric that are parametrised proportionally to their arc length.

Read more about this topic:  Levi-Civita Connection

Famous quotes containing the words derivative and/or curve:

    Poor John Field!—I trust he does not read this, unless he will improve by it,—thinking to live by some derivative old-country mode in this primitive new country.... With his horizon all his own, yet he a poor man, born to be poor, with his inherited Irish poverty or poor life, his Adam’s grandmother and boggy ways, not to rise in this world, he nor his posterity, till their wading webbed bog-trotting feet get talaria to their heels.
    Henry David Thoreau (1817–1862)

    In philosophical inquiry, the human spirit, imitating the movement of the stars, must follow a curve which brings it back to its point of departure. To conclude is to close a circle.
    Charles Baudelaire (1821–1867)