LCD Classification - Polymer Dispersed Liquid Crystals

Polymer Dispersed Liquid Crystals

Liquid crystals with low molecular weight can be mixed with high molecular weight polymers, followed by phase-separation to form a kind of spongy matrix filled with LC droplets. An external electric field can align the LC to match its index with that of the polymer matrix, switching that cell from a milky (scattering) state to a clear transparent state. When dichroic dyes are dissolved in the LC an electric field can switch the PDLC from an absorbing state to a fairly transparent state.

When the amount of polymer is small compared to that of the LC there will be no separation of both components, but the polymer forms an anisotropic fiber-like network within the LC that stabilizes the state in which it has been formed. In such a way, certain physical properties (e.g. elasticities, viscosities, and thus threshold voltages and response times, respectively) can be controlled.

Polymer Dispersed Liquid Crystals
PDLCs
  • absorptive dye-doped PDLCs
  • scattering PDLCs
  • holographic PCLCs
  • polymer stabilized LCDs

Read more about this topic:  LCD Classification

Famous quotes containing the words liquid and/or crystals:

    Telephone poles were matchsticks, put there to be snapped off at a whim. Dogs trotting across the road were suddenly big trucks. Old ladies turned into moving—vans. Everything was too bright, but very funny and made for my delight. And about half a mile from my long liquid breakfast I turned carefully down a side street and parked, and sat beaming happily through the tannic fog for about an hour, remembering how witty we all had been, how handsome and talented ... [ellipsis in original]
    M.F.K. Fisher (1908–1992)

    It is clear that everybody interested in science must be interested in world 3 objects. A physical scientist, to start with, may be interested mainly in world 1 objects—say crystals and X-rays. But very soon he must realize how much depends on our interpretation of the facts, that is, on our theories, and so on world 3 objects. Similarly, a historian of science, or a philosopher interested in science must be largely a student of world 3 objects.
    Karl Popper (1902–1994)