Lanthanide - Chemistry and Compounds

Chemistry and Compounds

The electronic structure of the lanthanide elements, with minor exceptions is 6s24fn. In their compounds, the 6s electrons are lost and the ions have the configuration 4fm. The chemistry of the lanthanides differs from main group elements and transition metals because of the nature of the 4f orbitals. These orbitals are "buried" inside the atom and are shielded from the atom's environment by the 4d and 5p electrons. As a consequence of this, the chemistry of the elements is largely determined by their size, which decreases gradually from 102 pm (La3+) with increasing atomic number to 86 pm (Lu3+), the so-called lanthanide contraction. All the lanthanide elements exhibit the oxidation state +3. In addition Ce3+ can lose its single f electron to form Ce4+ with the stable electronic configuration of xenon. Also, Eu3+ can gain an electron to form Eu2+ with the f7 configuration which has the extra stability of a half-filled shell. Promethium is effectively a man-made element as all its isotopes are radioactive with half-lives shorter than 20 y.

In terms of reduction potentials, the Ln0/3+ couples are nearly the same for all lanthanides, ranging from −1.99 (for Eu) to −2.35 V (for Pr). Thus, these metals are highly reducing, with reducing power similar to alkaline earth metals such as Mg (−2.36 V).

Read more about this topic:  Lanthanide

Famous quotes containing the words chemistry and/or compounds:

    For me chemistry represented an indefinite cloud of future potentialities which enveloped my life to come in black volutes torn by fiery flashes, like those which had hidden Mount Sinai. Like Moses, from that cloud I expected my law, the principle of order in me, around me, and in the world.... I would watch the buds swell in spring, the mica glint in the granite, my own hands, and I would say to myself: “I will understand this, too, I will understand everything.”
    Primo Levi (1919–1987)

    We can come up with a working definition of life, which is what we did for the Viking mission to Mars. We said we could think in terms of a large molecule made up of carbon compounds that can replicate, or make copies of itself, and metabolize food and energy. So that’s the thought: macrocolecule, metabolism, replication.
    Cyril Ponnamperuma (b. 1923)