Kilogram - Proposed Future Definitions

Proposed Future Definitions

See also: New SI definitions
In the following sections, wherever numeric equalities are shown in ‘concise form’—such as 1.85487(14)×1013—the two digits between the parentheses denote the uncertainty at 1σ standard deviation (68% confidence level) in the two least significant digits of the significand. A final X in a proposed definition denotes digits yet to be agreed on.

As of 2012 the kilogram was the only SI unit still defined by an artifact. In 1960 the meter having also been defined as an artifact (a single platinum-iridium bar with two marks on it) was redefined in terms of invariant, fundamental physical constants (the wavelength of light emitted by krypton, and later the speed of light) so that the standard can be reproduced in different laboratories by following a written specification. At the 94th Meeting of the International Committee for Weights and Measures (2005) it was recommended that the same be done with the kilogram.

In October 2010, the International Committee for Weights and Measures (known by its French-language initials CIPM) voted to submit a resolution for consideration at the General Conference on Weights and Measures (CGPM), to "take note of an intention" that the kilogram be defined in terms of the Planck constant, h. This resolution was accepted by the 24th conference of the CGPM in October 2011 and in addition the date of the 25th conference was moved forward from 2015 to 2014. Such a definition would theoretically permit any apparatus that was capable of delineating the kilogram in terms of the Planck constant to be used as long as it possessed sufficient precision, accuracy and stability. The watt balance (discussed below) may be able to do this.

In getting to the threshold of replacing the last artifact that underpins much of the International System of Units (SI), a variety of other very different technologies and approaches were considered and explored over many years. They too are covered below. Some of these now-abandoned approaches were based on equipment and procedures that would have enabled the reproducible production of new, kilogram-mass prototypes on demand (albeit with extraordinary effort) using measurement techniques and material properties that are ultimately based on, or traceable to, fundamental constants. Others were based on devices that measured either the acceleration or weight of hand-tuned, kilogram test masses and which expressed their magnitudes in electrical terms via special components that permit traceability to fundamental constants. All approaches depend on converting a weight measurement to a mass, and therefore require the precise measurement of the strength of gravity in laboratories. All approaches would have precisely fixed one or more constants of nature at a defined value.

Read more about this topic:  Kilogram

Famous quotes containing the words proposed, future and/or definitions:

    I have always been, am, and propose to remain a mere scholar. All that I have ever proposed to myself is to say, this and this I have learned; thus and thus have I learned it; go thou and learn better; but do not thrust on my shoulders the responsibility for your own laziness if you elect to take, on my authority, conclusions the value of which you ought to have tested for yourself.
    Thomas Henry Huxley (1825–95)

    To pin your hopes upon the future is to consign those hopes to a hypothesis, which is to say, a nothingness. Here and now is what we must contend with.
    Angela Carter (1940–1992)

    What I do not like about our definitions of genius is that there is in them nothing of the day of judgment, nothing of resounding through eternity and nothing of the footsteps of the Almighty.
    —G.C. (Georg Christoph)