In Algebraic Structures
If X and Y are algebraic structures of some fixed type (such as groups, rings, or vector spaces), and if the function f from X to Y is a homomorphism, then ker f will be a subalgebra of the direct product X × X. Subalgebras of X × X that are also equivalence relations (called congruence relations) are important in abstract algebra, because they define the most general notion of quotient algebra. Thus the coimage of f is a quotient algebra of X much as the image of f is a subalgebra of Y; and the bijection between them becomes an isomorphism in the algebraic sense as well (this is the most general form of the first isomorphism theorem in algebra). The use of kernels in this context is discussed further in the article Kernel (algebra).
Read more about this topic: Kernel (set Theory)
Famous quotes containing the words algebraic and/or structures:
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)
“The philosopher believes that the value of his philosophy lies in its totality, in its structure: posterity discovers it in the stones with which he built and with which other structures are subsequently built that are frequently betterand so, in the fact that that structure can be demolished and yet still possess value as material.”
—Friedrich Nietzsche (18441900)