Kernel Density Estimation - Relation To The Characteristic Function Density Estimator

Relation To The Characteristic Function Density Estimator

Given the sample (x1, x2, …, xn), it is natural to estimate the characteristic function φ(t) = E as

 \hat\varphi(t) = \frac{1}{n} \sum_{j=1}^n e^{itx_j}

Knowing the characteristic function it is possible to find the corresponding probability density function through the inverse Fourier transform formula. One difficulty with applying this inversion formula is that it leads to a diverging integral since the estimate is unreliable for large t’s. To circumvent this problem, the estimator is multiplied by a damping function ψh(t) = ψ(ht), which is equal to 1 at the origin, and then falls to 0 at infinity. The “bandwidth parameter” h controls how fast we try to dampen the function . In particular when h is small, then ψh(t) will be approximately one for a large range of t’s, which means that remains practically unaltered in the most important region oft’s.

The most common choice for function ψ is either the uniform function ψ(t) = 1{−1 ≤ t ≤ 1}, which effectively means truncating the interval of integration in the inversion formula to, or the gaussian function ψ(t) = e−π t2. Once the function ψ has been chosen, the inversion formula may be applied, and the density estimator will be

\begin{align} \hat{f}(x) &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat\varphi(t)\psi_h(t) e^{-itx}dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{n} \sum_{j=1}^n e^{it(x_j-x)} \psi(ht) dt \\ &= \frac{1}{nh} \sum_{j=1}^n \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-i(ht)\frac{x-x_j}{h}} \psi(ht) d(ht) = \frac{1}{nh} \sum_{j=1}^n K\Big(\frac{x-x_j}{h}\Big), \end{align}

where K is the inverse Fourier transform of the damping function ψ. Thus the kernel density estimator coincides with the characteristic function density estimator.

Read more about this topic:  Kernel Density Estimation

Famous quotes containing the words relation to the, relation to, relation and/or function:

    Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.
    Alexander Herzen (1812–1870)

    The foregoing generations beheld God and nature face to face; we, through their eyes. Why should not we also enjoy an original relation to the universe? Why should not we have a poetry and philosophy of insight and not of tradition, and a religion by revelation to us, and not the history of theirs?
    Ralph Waldo Emerson (1803–1882)

    The adolescent does not develop her identity and individuality by moving outside her family. She is not triggered by some magic unconscious dynamic whereby she rejects her family in favour of her peers or of a larger society.... She continues to develop in relation to her parents. Her mother continues to have more influence over her than either her father or her friends.
    Terri Apter (20th century)

    The press and politicians. A delicate relationship. Too close, and danger ensues. Too far apart and democracy itself cannot function without the essential exchange of information. Creative leaks, a discreet lunch, interchange in the Lobby, the art of the unattributable telephone call, late at night.
    Howard Brenton (b. 1942)