Keq - Temperature Dependence

Temperature Dependence

The van 't Hoff equation.

shows that when the reaction is exothermic (ΔH is negative), then K decreases with increasing temperature, in accordance with Le Chatelier's principle. It permits calculation of the reaction equilibrium constant at temperature T2 if the reaction constant at T1 is known and the standard reaction enthalpy can be assumed to be independent of temperature even though each standard enthalpy change is defined at a different temperature. However, this assumption is valid only for small temperature differences T2T1. In fact standard thermodynamic arguments can be used to show that

where Cp is the heat capacity at constant pressure. The equilibrium constant is related to the standard Gibbs energy change of reaction as

where ΔG is the standard Gibbs free energy change of reaction, R is the gas constant, and T the absolute temperature.

If the equilibrium constant has been determined and the standard reaction enthalpy has also been determined, by calorimetry, for example, this equation allows the standard entropy change for the reaction to be derived.

Read more about this topic:  Keq

Famous quotes containing the words temperature and/or dependence:

    This pond never breaks up so soon as the others in this neighborhood, on account both of its greater depth and its having no stream passing through it to melt or wear away the ice.... It indicates better than any water hereabouts the absolute progress of the season, being least affected by transient changes of temperature. A severe cold of a few days’ duration in March may very much retard the opening of the former ponds, while the temperature of Walden increases almost uninterruptedly.
    Henry David Thoreau (1817–1862)

    ... the whole Wilsonian buncombe ... its ideational hollowness, its ludicrous strutting and bombast, its heavy dependence upon greasy and meaningless words, its frequent descents to mere sound and fury, signifying nothing.
    —H.L. (Henry Lewis)