Kepler's Laws of Planetary Motion - Computing Position As A Function of Time

Computing Position As A Function of Time

Kepler used his two first laws for computing the position of a planet as a function of time. His method involves the solution of a transcendental equation called Kepler's equation.

The procedure for calculating the heliocentric polar coordinates (r,θ) to a planetary position as a function of the time t since perihelion, and the mean motion n = 2π/P, is the following four steps.

1. Compute the mean anomaly
2. Compute the eccentric anomaly E by solving Kepler's equation:
3. Compute the true anomaly θ by the equation:
4. Compute the heliocentric distance r from the first law:

The important special case of circular orbit, ε = 0, gives simply θ = E = M. Because the uniform circular motion was considered to be normal, a deviation from this motion was considered an anomaly.

The proof of this procedure is shown below.

Read more about this topic:  Kepler's Laws Of Planetary Motion

Famous quotes containing the words position, function and/or time:

    The first full-fledged generation of women in the professions did not talk about their overbooked agenda or the toll it took on them and their families. They knew that their position in the office was shaky at best. . . . If they suffered self-doubt or frustration . . . they blamed themselves—either for expecting too much or for doing too little.
    Deborah J. Swiss (20th century)

    The intension of a proposition comprises whatever the proposition entails: and it includes nothing else.... The connotation or intension of a function comprises all that attribution of this predicate to anything entails as also predicable to that thing.
    Clarence Lewis (1883–1964)

    There comes a time in every rightly constructed boy’s life when he has a raging desire to go somewhere and dig for hidden treasure.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)