Kepler's Laws of Planetary Motion - Computing Position As A Function of Time

Computing Position As A Function of Time

Kepler used his two first laws for computing the position of a planet as a function of time. His method involves the solution of a transcendental equation called Kepler's equation.

The procedure for calculating the heliocentric polar coordinates (r,θ) to a planetary position as a function of the time t since perihelion, and the mean motion n = 2π/P, is the following four steps.

1. Compute the mean anomaly
2. Compute the eccentric anomaly E by solving Kepler's equation:
3. Compute the true anomaly θ by the equation:
4. Compute the heliocentric distance r from the first law:

The important special case of circular orbit, ε = 0, gives simply θ = E = M. Because the uniform circular motion was considered to be normal, a deviation from this motion was considered an anomaly.

The proof of this procedure is shown below.

Read more about this topic:  Kepler's Laws Of Planetary Motion

Famous quotes containing the words position, function and/or time:

    I believe that no man who holds a leader’s position should ever accept favors from either side. He is then committed to show favors. A leader must stand alone.
    Mother Jones (1830–1930)

    The information links are like nerves that pervade and help to animate the human organism. The sensors and monitors are analogous to the human senses that put us in touch with the world. Data bases correspond to memory; the information processors perform the function of human reasoning and comprehension. Once the postmodern infrastructure is reasonably integrated, it will greatly exceed human intelligence in reach, acuity, capacity, and precision.
    Albert Borgman, U.S. educator, author. Crossing the Postmodern Divide, ch. 4, University of Chicago Press (1992)

    I wish to suggest that a man may be very industrious, and yet not spend his time well. There is no more fatal blunderer than he who consumes the greater part of his life getting his living.
    Henry David Thoreau (1817–1862)