Kepler's Laws of Planetary Motion - Computing Position As A Function of Time

Computing Position As A Function of Time

Kepler used his two first laws for computing the position of a planet as a function of time. His method involves the solution of a transcendental equation called Kepler's equation.

The procedure for calculating the heliocentric polar coordinates (r,θ) to a planetary position as a function of the time t since perihelion, and the mean motion n = 2π/P, is the following four steps.

1. Compute the mean anomaly
2. Compute the eccentric anomaly E by solving Kepler's equation:
3. Compute the true anomaly θ by the equation:
4. Compute the heliocentric distance r from the first law:

The important special case of circular orbit, ε = 0, gives simply θ = E = M. Because the uniform circular motion was considered to be normal, a deviation from this motion was considered an anomaly.

The proof of this procedure is shown below.

Read more about this topic:  Kepler's Laws Of Planetary Motion

Famous quotes containing the words position, function and/or time:

    There is a certain relief in change, even though it be from bad to worse; as I have found in travelling in a stage- coach, that it is often a comfort to shift one’s position and be bruised in a new place.
    Washington Irving (1783–1859)

    To look backward for a while is to refresh the eye, to restore it, and to render it the more fit for its prime function of looking forward.
    Margaret Fairless Barber (1869–1901)

    There were two unpleasant surprises [about Washington]. One was the inertia of Congress, the length of time it takes to get a complicated piece of legislation through ... and the other was the irresponsibility of the press.
    Jimmy Carter (James Earl Carter, Jr.)