Kelp Forest - Patch Dynamics

Patch Dynamics

Another major area of kelp forest research has been directed at understanding the spatial-temporal patterns of kelp patches. Not only do such dynamics affect the physical landscape, but they also affect species that associate with kelp for refuge or foraging activities. Large-scale environmental disturbances have offered important insights concerning mechanisms and ecosystem resilience. Examples of environmental disturbances include the following:

  • Acute and chronic pollution events have been shown to impact southern California kelp forests, though the intensity of the impact seems to depend on both the nature of the contaminants and duration of exposure. Pollution can include sediment deposition and eutrophication from sewage, industrial byproducts and contaminants like PCBs and heavy metals (for example, copper, zinc), runoff of organophosphates from agricultural areas, anti-fouling chemicals used in harbors and marinas (for example, TBT and creosote) and land-based pathogens like fecal coliform bacteria.
  • Catastrophic storms can remove surface kelp canopies through wave activity but usually leave understory kelps intact; they can also remove urchins when little spatial refuge is available. Interspersed canopy clearings create a seascape mosaic where sunlight penetrates deeper into the kelp forest and species that are normally light-limited in the understory can flourish. Similarly, substrate cleared of kelp holdfasts can provide space for other sessile species to establish themselves and occupy the seafloor, sometimes directly competing with juvenile kelp and even inhibiting their settlement.
  • El NiƱo-Southern Oscillation (ENSO) events involve the depression of oceanographic thermoclines, severe reductions of nutrient input, and changes in storm patterns. Stress due to warm water and nutrient depletion can increase the susceptibility of kelp to storm damage and herbivorous grazing, sometimes even prompting phase shifts to urchin-dominated landscapes. In general, oceanographic conditions (that is, water temperature, currents) influence the recruitment success of kelp and its competitors, which clearly affect subsequent species interactions and kelp forest dynamics.
  • Overfishing higher trophic levels that naturally regulate herbivore populations is also recognized as an important stressor in kelp forests. As described in the previous section, the drivers and outcomes of trophic cascades are important for understanding spatial-temporal patterns of kelp forests.

In addition to ecological monitoring of kelp forests before, during, and after such disturbances, scientists try to tease apart the intricacies of kelp forest dynamics using experimental manipulations. By working on smaller spatial-temporal scales, they can control for the presence or absence of specific biotic and abiotic factors to discover the operative mechanisms. For example, in southern Australia, manipulations of kelp canopy types demonstrated that the relative amount of Ecklonia radiata in a canopy could be used to predict understory species assemblages; consequently, the proportion of E. radiata can be used as an indicator of other species occurring in the environment.

Read more about this topic:  Kelp Forest

Famous quotes containing the words patch and/or dynamics:

    Imperious Caesar, dead and turned to clay,
    Might stop a hole to keep the wind away.
    O that that earth which kept the world in awe
    Should patch a wall t’expel the winter’s flaw!
    William Shakespeare (1564–1616)

    Anytime we react to behavior in our children that we dislike in ourselves, we need to proceed with extreme caution. The dynamics of everyday family life also have a way of repeating themselves.
    Cathy Rindner Tempelsman (20th century)