Kagome Lattice - Related Polyhedra and Tilings

Related Polyhedra and Tilings

A tiling with alternate large and small triangles is topologically identical to the trihexagonal tiling, but has a different symmetry group. The hexagons are distorted so 3 vertices are on the mid-edge of the larger triangles. As with the trihexagonal tiling, it has two uniform colorings:

The trihexagonal tiling forms the case k = 6 in a sequence of quasiregular polyhedra and tilings, each of which has a vertex figure with two k-gons and two triangles:

Spherical polyhedra Euclidean tiling Hyperbolic tiling
Symmetry *332

Td
*432

Oh
*532

Ih
*632

p6m
*732
*832
*∞32
Quasiregular
figures

Octahedron

Cuboctahedron

Icosidodecahedron

Trihexagonal tiling

Triheptagonal tiling

Trioctagonal tiling
Vertex configuration 3.3.3.3 3.4.3.4 3.5.3.5 3.6.3.6 3.7.3.7 3.8.3.8 3.∞.3.∞
Coxeter diagram

The subset of this sequence in which k is an even number has (*n33) reflectional symmetry.

The trihexagonal tiling is also one of eight uniform tilings that can be formed from the regular hexagonal tiling (or the dual triangular tiling) by a Wythoff construction. Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms, 7 which are topologically distinct. (The truncated triangular tiling is topologically identical to the hexagonal tiling.)

Wythoff 3 | 6 2 2 3 | 6 2 | 6 3 2 6 | 3 6 | 3 2 6 3 | 2 6 3 2 | | 6 3 2
Schläfli {6,3} t0,1{6,3} t1{6,3} t1,2{6,3} t2{6,3} t0,2{6,3} t0,1,2{6,3} s{6,3} h0{6,3} h1,2{6,3}
Coxeter
Image
Vertex figure

6.6.6

3.12.12

3.6.3.6

6.6.6

{36}

3.4.6.4

4.6.12

3.3.3.3.6

(3.3)3

3.3.3.3.3.3
Wythoff 3 | 3 3 3 3 | 3 3 | 3 3 3 3 | 3 3 | 3 3 3 3 | 3 3 3 3 | | 3 3 3
Coxeter
Image
Vertex figure

(3.3)3

3.6.3.6

(3.3)3

3.6.3.6

(3.3)3

3.6.3.6

6.6.6

3.3.3.3.3.3

Read more about this topic:  Kagome Lattice

Famous quotes containing the word related:

    In the middle years of childhood, it is more important to keep alive and glowing the interest in finding out and to support this interest with skills and techniques related to the process of finding out than to specify any particular piece of subject matter as inviolate.
    Dorothy H. Cohen (20th century)