High-dimensional Data
k-d trees are not suitable for efficiently finding the nearest neighbour in high dimensional spaces. As a general rule, if the dimensionality is k, the number of points in the data, N, should be N >> 2k. Otherwise, when k-d trees are used with high-dimensional data, most of the points in the tree will be evaluated and the efficiency is no better than exhaustive search, and approximate nearest-neighbour methods should be used instead.
Read more about this topic: K-d Tree
Famous quotes containing the word data:
“Mental health data from the 1950s on middle-aged women showed them to be a particularly distressed group, vulnerable to depression and feelings of uselessness. This isnt surprising. If society tells you that your main role is to be attractive to men and you are getting crows feet, and to be a mother to children and yours are leaving home, no wonder you are distressed.”
—Grace Baruch (20th century)