John's equation is an ultrahyperbolic partial differential equation satisfied by the X-ray transform of a function. It is named after Fritz John.
Given a function with compact support the X-ray transform is the integral over all lines in . We will parameterise the lines by pairs of points, on each line and define as the ray transform where
Such functions are characterized by John's equations
which is proved by Fritz John for dimension three and by Kurusa for higher dimensions.
In three dimensional x-ray computerized tomography John's equation can be solved to fill in missing data, for example where the data is obtained from a point source traversing a curve, typically a helix.
More generally an ultrahyperbolic partial differential equation (a term coined by Richard Courant) is a second order partial differential equation of the form
where, such that the quadratic form
can be reduced by a linear change of variables to the form
It is not possible to arbitrarily specify the value of the solution on a non-characteristic hypersurface. John's paper however does give examples of manifolds on which an arbitrary specification of u can be extended to a solution.
Famous quotes containing the word equation:
“A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.”
—Norman Mailer (b. 1923)