Intrinsic Dimension - Formal Definition

Formal Definition

For an N-variable function f, the set of variables can be represented as an N-dimensional vector x:

f=f(x) where x=(x1, x2, ..., xN)

If for some M-variable function g and M × N matrix A is it the case that

  • for all x; f(x)=g(Ax),
  • M is the smallest number for which the above relation between f and g can be found,

then the intrinsic dimension of f is M.

The intrinsic dimension is a characterization of f, it is not an unambiguous characterization of g nor of A. If the above relation is satisfied for some f, g, and A, it must also be satisfied for the same f and g′ and A′ given by

g′(y)=g(By)
A′=B-1 A

where B is a non-singular M × M matrix, since

f(x)=g′(A′x)=g(BA′x)=g(Ax)

Read more about this topic:  Intrinsic Dimension

Famous quotes containing the words formal and/or definition:

    The formal Washington dinner party has all the spontaneity of a Japanese imperial funeral.
    Simon Hoggart (b. 1946)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)