Intermediate Filament - Structure

Structure

The structure of proteins that form IF was first predicted by computerized analysis of the amino acid sequence of a human epidermal keratin derived from cloned cDNAs. Analysis of a second keratin sequence revealed that the two types of keratins share only about 30% amino acid sequence homology but share similar patterns of secondary structure domains. As suggested by the first model, all IF proteins appear to have a central alpha-helical rod domain that is composed of four alpha-helical segments (named as 1A, 1B, 2A and 2B) separated by three linker regions.

The N and C-termini of IF proteins are non-alpha-helical regions and show wide variation in their lengths and sequences across IF families. The basic building-block for IFs is a parallel and in-register dimer. The dimer is formed through the interaction of the rod domain to form a coiled coil. Cytoplasmic IF assemble into non-polar unit-length filaments (ULF), which then assemble into longer structures. Part of the assembly process includes a compaction step, in which ULF tighten and assume a smaller diameter. The reasons for this compaction are not well understood, and IF are routinely observed to have diameters ranging between 6 and 12 nm.

The N-terminal "head domain" binds DNA. Vimentin heads are able to alter nuclear architecture and chromatin distribution, and the liberation of heads by HIV-1 protease may play an important role in HIV-1 associated cytopathogenesis and carcinogenesis. Phosphorylation of the head region can affect filament stability. The head has been shown to interact with the rod domain of the same protein.

C-terminal "tail domain" shows extreme length variation between different IF proteins.

The anti-parallel orientation of tetramers means that, unlike microtubules and microfilaments, which have a plus end and a minus end, IFs lack polarity and cannot serve as basis for cell motility and intracellular transport.

Also, as opposed to actin or tubulin, intermediate filaments do not contain a binding site for a nucleoside triphosphate.

Cytoplasmic IF do not undergo treadmilling like microtubules and actin fibers, but they are dynamic. For a review see: .

Read more about this topic:  Intermediate Filament

Famous quotes containing the word structure:

    Vashtar: So it’s finished. A structure to house one man and the greatest treasure of all time.
    Senta: And a structure that will last for all time.
    Vashtar: Only history will tell that.
    Senta: Sire, will he not be remembered?
    Vashtar: Yes, he’ll be remembered. The pyramid’ll keep his memory alive. In that he built better than he knew.
    William Faulkner (1897–1962)

    A special feature of the structure of our book is the monstrous but perfectly organic part that eavesdropping plays in it.
    Vladimir Nabokov (1899–1977)

    Man is more disposed to domination than freedom; and a structure of dominion not only gladdens the eye of the master who rears and protects it, but even its servants are uplifted by the thought that they are members of a whole, which rises high above the life and strength of single generations.
    Karl Wilhelm Von Humboldt (1767–1835)