Interlaced Video - History

History

When motion picture film was developed, it was observed that the movie screen had to be illuminated at a high rate to prevent visible flicker. The exact rate necessary varies by brightness, with 40 Hz being acceptable in dimly lit rooms, while up to 80 Hz may be necessary for bright displays that extend into peripheral vision. The film solution was to project each frame of film three times using a three-bladed shutter: a movie shot at 16 frames per second would thus illuminate the screen 48 times per second. Later, when sound film became available, the higher projection speed of 24 frames per second enabled a two bladed shutter to be used maintaining the 48 times per second illumination — but only in projectors that were incapable of projecting at the lower speed.

But this solution could not be used for television — storing a full video frame and scanning it twice would require a frame buffer, a method that did not become feasible until the late 1980s. In addition, avoiding on-screen interference patterns caused by studio lighting and the limits of vacuum tube technology required that CRTs for TV be scanned at AC line frequency. (This was 60 Hz in the US, 50 Hz Europe.)

In the domain of mechanical television, the concept of interlacing was demonstrated by Léon Theremin. He had been developing a mirror drum-based television, starting with 16 lines resolution in 1925, then 32 lines and eventually 64 using interlacing in 1926, and as part of his thesis on May 7, 1926, he electrically transmitted and then projected near-simultaneous moving images on a five foot square screen.

The concept of breaking a single video frame into interlaced lines was first formulated and patented by German Telefunken engineer Fritz Schröter in 1930, and in the USA by RCA engineer Randall C. Ballard in 1932. Commercial implementation began in 1934 as cathode ray tube screens became brighter, increasing the level of flicker caused by progressive (sequential) scanning.

In 1936, when the analog standards were being set in the UK, CRTs could only scan at around 200 lines in 1/50 of a second. By using interlace, a pair of 202.5-line fields could be superimposed to become a sharper 405 line frame. The vertical scan frequency remained 50 Hz, so flicker was not a problem, but visible detail was noticeably improved. As a result, this system was able to supplant John Logie Baird's 240 line mechanical progressive scan system that was also being used at the time.

From the 1940s onward, improvements in technology allowed the US and the rest of Europe to adopt systems using progressively more bandwidth to scan higher line counts, and achieve better pictures. However the fundamentals of interlaced scanning were at the heart of all of these systems. The US adopted the 525 line system known as NTSC, Europe adopted the 625 line system, and the UK switched from its 405 line system to 625 in order to avoid having to develop a unique method of color TV. France switched from its unique 819 line system to the more European standard of 625. Although the term PAL is often used to describe the line and frame standard of the TV system, this is in fact incorrect and refers only to the method of superimposing the colour information on the standard 625 line broadcast. The French adopted their own SECAM system which was also adopted by some other countries, notably Russia and its satellites. PAL has been used on some otherwise NTSC broadcasts notably in Brazil.

Interlacing was ubiquitous in displays until the 1970s, when the needs of computer monitors resulted in the reintroduction of progressive scan. Interlace is still used for most standard definition TVs, and the 1080i HDTV broadcast standard, but not for LCD, micromirror (DLP), or plasma displays; these displays do not use a raster scan to create an image, and so cannot benefit from interlacing: in practice, they have to be driven with a progressive scan signal. The deinterlacing circuitry to get progressive scan from a normal interlaced broadcast television signal can add to the cost of a television set using such displays. Currently, progressive displays dominate the HDTV market.

Read more about this topic:  Interlaced Video

Famous quotes containing the word history:

    History, as an entirety, could only exist in the eyes of an observer outside it and outside the world. History only exists, in the final analysis, for God.
    Albert Camus (1913–1960)

    So in accepting the leading of the sentiments, it is not what we believe concerning the immortality of the soul, or the like, but the universal impulse to believe, that is the material circumstance, and is the principal fact in this history of the globe.
    Ralph Waldo Emerson (1803–1882)

    I saw the Arab map.
    It resembled a mare shuffling on,
    dragging its history like saddlebags,
    nearing its tomb and the pitch of hell.
    Adonis [Ali Ahmed Said] (b. 1930)