Intercontinental Ballistic Missile - Modern ICBMs

Modern ICBMs

Modern ICBMs typically carry multiple independently targetable reentry vehicles (MIRVs), each of which carries a separate nuclear warhead, allowing a single missile to hit multiple targets. MIRV was an outgrowth of the rapidly shrinking size and weight of modern warheads and the Strategic Arms Limitation Treaties which imposed limitations on the number of launch vehicles (SALT I and SALT II). It has also proved to be an "easy answer" to proposed deployments of ABM systems—it is far less expensive to add more warheads to an existing missile system than to build an ABM system capable of shooting down the additional warheads; hence, most ABM system proposals have been judged to be impractical. The first operational ABM systems were deployed in the U.S. during 1970s. Safeguard ABM facility was located in North Dakota and was operational from 1975–1976. The USSR deployed its Galosh ABM system around Moscow in the 1970s, which remains in service. Israel deployed a national ABM system based on the Arrow missile in 1998, but it is mainly designed to intercept shorter-ranged theater ballistic missiles, not ICBMs. The U.S. Alaska-based National missile defense system attained initial operational capability in 2004.

ICBMs can be deployed from multiple platforms:

  • in missile silos, which offer some protection from military attack (including, the designers hope, some protection from a nuclear first strike)
  • on submarines: submarine-launched ballistic missiles (SLBMs); most or all SLBMs have the long range of ICBMs (as opposed to IRBMs)
  • on heavy trucks; this applies to one version of the RT-2UTTH Topol M which may be deployed from a self-propelled mobile launcher, capable of moving through roadless terrain, and launching a missile from any point along its route
  • mobile launchers on rails; this applies, for example, to РТ-23УТТХ "Молодец" (RT-23UTTH "Molodets"—SS-24 "Sсаlреl")

The last three kinds are mobile and therefore hard to find.

During storage, one of the most important features of the missile is its serviceability. One of the key features of the first computer-controlled ICBM, the Minuteman missile, was that it could quickly and easily use its computer to test itself.

In flight, a booster pushes the warhead and then falls away. Most modern boosters are solid-fueled rocket motors, which can be stored easily for long periods of time. Early missiles used liquid-fueled rocket motors. Many liquid-fueled ICBMs could not be kept fuelled all the time as the cryogenic liquid oxygen boiled off and caused ice formation, and therefore fueling the rocket was necessary before launch. This procedure was a source of significant operational delay, and might allow the missiles to be destroyed by enemy counterparts before they could be used. To resolve this problem the British invented the missile silo that protected the missile from a first strike and also hid fuelling operations underground.

Once the booster falls away, the warhead continues on an unpowered ballistic trajectory, much like an artillery shell or cannon ball. The warhead is encased in a cone-shaped reentry vehicle and is difficult to detect in this phase of flight as there is no rocket exhaust or other emissions to mark its position to defenders. The high speeds of the warheads make them difficult to intercept and allow for little warning striking targets many thousands of kilometers away from the launch site (and due to the possible locations of the submarines: anywhere in the world) within approximately 30 minutes.

Many authorities say that missiles also release aluminized balloons, electronic noisemakers, and other items intended to confuse interception devices and radars (see penetration aid).

As the nuclear warhead reenters the Earth's atmosphere its high speed causes compression of the air, leading to a dramatic rise in temperature which would destroy it if it were not shielded in some way. As a result, warhead components are contained within an aluminium honeycomb substructure, sheathed in pyrolytic graphite-epoxy resin composite, with a heat-shield layer on top which is constructed out of 3-Dimensional Quartz Phenolic.

Accuracy is crucial, because doubling the accuracy decreases the needed warhead energy by a factor of four. Accuracy is limited by the accuracy of the navigation system and the available geophysical information.

Strategic missile systems are thought to use custom integrated circuits designed to calculate navigational differential equations thousands to millions of times per second in order to reduce navigational errors caused by calculation alone. These circuits are usually a network of binary addition circuits that continually recalculate the missile's position. The inputs to the navigation circuit are set by a general purpose computer according to a navigational input schedule loaded into the missile before launch.

One particular weapon developed by the Soviet Union (FOBS) had a partial orbital trajectory, and unlike most ICBMs its target could not be deduced from its orbital flight path. It was decommissioned in compliance with arms control agreements, which address the maximum range of ICBMs and prohibit orbital or fractional-orbital weapons.

Read more about this topic:  Intercontinental Ballistic Missile

Famous quotes containing the word modern:

    A more problematic example is the parallel between the increasingly abstract and insubstantial picture of the physical universe which modern physics has given us and the popularity of abstract and non-representational forms of art and poetry. In each case the representation of reality is increasingly removed from the picture which is immediately presented to us by our senses.
    Harvey Brooks (b. 1915)