Rapid Response To Human Input
Experiments have shown that a delay of more than 20 ms between when input is provided and a visual representation is updated is noticeable by most people. Thus it is desirable for an interactive visualization to provide a rendering based on human input within this time frame. However, when large amounts of data must be processed to create a visualization, this becomes hard or even impossible with current technology. Thus the term “interactive visualization” is usually applied to systems that provide feedback to users within several seconds of input. The term interactive framerate is often used to measure how interactive a visualization is. Framerates measure the frequency with which an image (a frame) can be generated by a visualization system. A framerate of 50 frames per second (frame/s) is considered good while 0.1 frame/s would be considered poor. The use of framerates to characterize interactivity is slightly misleading however, since framerate is a measure of bandwidth while humans are more sensitive to latency. Specifically, it is possible to achieve a good framerate of 50 frame/s but if the images generated refer to changes to the visualization that a person made more than 1 second ago, it will not feel interactive to a person.
The rapid response time required for interactive visualization is a difficult constraint to meet and there are several approaches that have been explored to provide people with rapid visual feedback based on their input. Some include
- Parallel rendering – where more than one computer or video card is used simultaneously to render an image. Multiple frames can be rendered at the same time by different computers and the results transferred over the network for display on a single monitor. This requires each computer to hold a copy of all the information to be rendered and increases bandwidth, but also increases latency. Also, each computer can render a different region of a single frame and send the results over a network for display. This again requires each computer to hold all of the data and can lead to a load imbalance when one computer is responsible for rendering a region of the screen with more information than other computers. Finally, each computer can render an entire frame containing a subset of the information. The resulting images plus the associated depth buffer can then be sent across the network and merged with the images from other computers. The result is a single frame containing all the information to be rendered, even though no single computer's memory held all of the information. This is called parallel depth compositing and is used when large amounts of information must be rendered interactively.
- Progressive rendering – where a framerate is guaranteed by rendering some subset of the information to be presented and providing incremental (progressive) improvements to the rendering once the visualization is no longer changing.
- Level-of-detail (LOD) rendering – where simplified representations of information are rendered to achieve a desired framerate while a person is providing input and then the full representation is used to generate a still image once the person is through manipulating the visualization. One common variant of LOD rendering is subsampling. When the information being represented is stored in a topologically rectangular array (as is common with digital photos, MRI scans, and finite difference simulations), a lower resolution version can easily be generated by skipping n points for each 1 point rendered. Subsampling can also be used to accelerate rendering techniques such as volume visualization that require more than twice the computations for an image twice the size. By rendering a smaller image and then scaling the image to fill the requested screen space, much less time is required to render the same data.
- Frameless rendering – where the visualization is no longer presented as a time series of images, but as a single image where different regions are updated over time.
Read more about this topic: Interactive Visualization
Famous quotes containing the words rapid, response, human and/or input:
“In a time of confusion and rapid change like the present, when terms are continually turning inside out and the names of things hardly keep their meaning from day to day, its not possible to write two honest paragraphs without stopping to take crossbearings on every one of the abstractions that were so well ranged in ornate marble niches in the minds of our fathers.”
—John Dos Passos (18961970)
“Ill never forget my fathers response when I told him I wanted to be a lawyer. He said, If you do this, no man will ever want you.”
—Cassandra Dunn (b. c. 1931)
“That the world is not the embodiment of an eternal rationality can be conclusively proved by the fact that the piece of the world that we knowI mean our human reasonis not so very rational. And if it is not eternally and completely wise and rational, then the rest of the world will not be either; here the conclusion a minori ad majus, a parte ad totum applies, and does so with decisive force.”
—Friedrich Nietzsche (18441900)
“Family life is not a computer program that runs on its own; it needs continual input from everyone.”
—Neil Kurshan (20th century)