General Use
An integrating factor is any expression that a differential equation is multiplied by to facilitate integration and is not restricted to first order linear equations. For example, the nonlinear second order equation
admits as an integrating factor:
To integrate, note that both sides of the equation may be expressed as derivatives by going backwards with the chain rule:
Therefore
This form may be more useful, depending on application. Performing a separation of variables will give:
this is an implicit solution which involves a nonelementary integral. Though likely too obscure to be useful, this is a general solution. Also, because the previous equation is first order, it could be used for numeric solution in favor of the original equation.
Read more about this topic: Integrating Factor
Famous quotes containing the word general:
“The General Order is always to manoeuver in a body and on the attack; to maintain strict but not pettifogging discipline; to keep the troops constantly at the ready; to employ the utmost vigilance on sentry go; to use the bayonet on every possible occasion; and to follow up the enemy remorselessly until he is utterly destroyed.”
—Lazare Carnot (17531823)
“All the critics who could not make their reputations by discovering you are hoping to make them by predicting hopefully your approaching impotence, failure and general drying up of natural juices. Not a one will wish you luck or hope that you will keep on writing unless you have political affiliations in which case these will rally around and speak of you and Homer, Balzac, Zola and Link Steffens.”
—Ernest Hemingway (18991961)