General Use
An integrating factor is any expression that a differential equation is multiplied by to facilitate integration and is not restricted to first order linear equations. For example, the nonlinear second order equation
admits as an integrating factor:
To integrate, note that both sides of the equation may be expressed as derivatives by going backwards with the chain rule:
Therefore
This form may be more useful, depending on application. Performing a separation of variables will give:
this is an implicit solution which involves a nonelementary integral. Though likely too obscure to be useful, this is a general solution. Also, because the previous equation is first order, it could be used for numeric solution in favor of the original equation.
Read more about this topic: Integrating Factor
Famous quotes containing the word general:
“The general public is easy. You dont have to answer to anyone; and as long as you follow the rules of your profession, you neednt worry about the consequences. But the problem with the powerful and rich is that when they are sick, they really want their doctors to cure them.”
—Molière [Jean Baptiste Poquelin] (16221673)
“The general review of the past tends to satisfy me with my political life. No man, I suppose, ever came up to his ideal. The first half [of] my political life was first to resist the increase of slavery and secondly to destroy it.... The second half of my political life has been to rebuild, and to get rid of the despotic and corrupting tendencies and the animosities of the war, and other legacies of slavery.”
—Rutherford Birchard Hayes (18221893)