Injective Function - Definition

Definition

Let f be a function whose domain is a set A. The function f is injective if for all a and b in A, if f(a) = f(b), then a = b; that is, f(a) = f(b) implies a = b. Equivalently, if ab, then f(a) ≠ f(b).

Symbolically,

which is logically equivalent to the contrapositive,

Read more about this topic:  Injective Function

Famous quotes containing the word definition:

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)