Influenza A Virus - Human Influenza Virus

Human Influenza Virus

"Human influenza virus" usually refers to those subtypes that spread widely among humans. H1N1, H1N2, and H3N2 are the only known influenza A virus subtypes currently circulating among humans.

Genetic factors in distinguishing between "human flu viruses" and "avian influenza viruses" include:

PB2: (RNA polymerase): Amino acid (or residue) position 627 in the PB2 protein encoded by the PB2 RNA gene. Until H5N1, all known avian influenza viruses had a Glu at position 627, while all human influenza viruses had a lysine.
HA: (hemagglutinin): Avian influenza HA binds alpha 2–3 sialic acid receptors, while human influenza HA binds alpha 2–6 sialic acid receptors. Swine influenza viruses have the ability to bind both types of sialic acid receptors.

"About 52 key genetic changes distinguish avian influenza strains from those that spread easily among people, according to researchers in Taiwan, who analyzed the genes of more than 400 A type flu viruses." "How many mutations would make an avian virus capable of infecting humans efficiently, or how many mutations would render an influenza virus a pandemic strain, is difficult to predict. We have examined sequences from the 1918 strain, which is the only pandemic influenza virus that could be entirely derived from avian strains. Of the 52 species-associated positions, 16 have residues typical for human strains; the others remained as avian signatures. The result supports the hypothesis that the 1918 pandemic virus is more closely related to the avian influenza A virus than are other human influenza viruses."

Human flu symptoms usually include fever, cough, sore throat, muscle aches, conjunctivitis and, in severe cases, severe breathing problems and pneumonia that may be fatal. The severity of the infection will depend in large part on the state of the infected person's immune system and if the victim has been exposed to the strain before, and is therefore partially immune.

Highly pathogenic H5N1 avian influenza in a human is far worse, killing 50% of humans that catch it. In one case, a boy with H5N1 experienced diarrhea followed rapidly by a coma without developing respiratory or flu-like symptoms.

The influenza A virus subtypes that have been confirmed in humans, ordered by the number of known human pandemic deaths, are:

  • H1N1 caused "Spanish flu" and the 2009 swine flu outbreak
  • H2N2 caused "Asian flu" in the late 1950s
  • H3N2 caused "Hong Kong flu" in the late 1960s
  • H5N1 considered a global influenza pandemic threat through its spread in the mid-2000s
  • H7N7 has unusual zoonotic potential
  • H1N2 is currently endemic in humans and pigs
  • H9N2, H7N2, H7N3, H5N2, and H10N7.
H1N1
H1N1 is currently pandemic in both human and pig populations. A variant of H1N1 was responsible for the Spanish flu pandemic that killed some 50 million to 100 million people worldwide over about a year in 1918 and 1919. Another variant was named a pandemic threat in the 2009 flu pandemic. Controversy arose in October, 2005, after the H1N1 genome was published in the journal, Science, because of fears that this information could be used for bioterrorism.
H2N2
The Asian flu, a pandemic outbreak of H2N2 avian influenza, originated in China in 1957, spread worldwide that same year during which a influenza vaccine was developed, lasted until 1958 and caused between one and four million deaths.
H3N2
H3N2 is currently endemic in both human and pig populations. It evolved from H2N2 by antigenic shift and caused the Hong Kong flu pandemic of 1968 and 1969 that killed up to 750,000. "An early-onset, severe form of influenza A H3N2 made headlines when it claimed the lives of several children in the United States in late 2003."
The dominant strain of annual flu in January 2006 was H3N2. Measured resistance to the standard antiviral drugs amantadine and rimantadine in H3N2 increased from 1% in 1994 to 12% in 2003 to 91% in 2005.
"ontemporary human H3N2 influenza viruses are now endemic in pigs in southern China and can reassort with avian H5N1 viruses in this intermediate host."
H5N1
H5N1 is the world's major influenza pandemic threat.
"When he compared the 1918 virus with today's human flu viruses, Dr. Taubenberger noticed that it had alterations in just 25 to 30 of the virus's 4,400 amino acids. Those few changes turned a bird virus into a killer that could spread from person to person."
H7N7
H7N7 has unusual zoonotic potential. In 2003 in Netherlands, 89 people were confirmed to have H7N7 influenza virus infection following an outbreak in poultry on several farms. One death was recorded.
H1N2
H1N2 is currently endemic in both human and pig populations. The new H1N2 strain appears to have resulted from the reassortment of the genes of the currently circulating influenza H1N1 and H3N2 subtypes. The hemagglutinin protein of the H1N2 virus is similar to that of the currently circulating H1N1 viruses, and the neuraminidase protein is similar to that of the current H3N2 viruses.
H9N2
Low pathogenic avian influenza A (H9N2) infection was confirmed in 1999, in China and Hong Kong in two children, and in 2003 in Hong Kong in one child. All three fully recovered.
H7N2
One person in New York in 2003 and one person in Virginia in 2002 were found to have serologic evidence of infection with H7N2. Both fully recovered.
H7N3
In North America, the presence of avian influenza strain H7N3 was confirmed at several poultry farms in British Columbia in February 2004. As of April 2004, 18 farms had been quarantined to halt the spread of the virus. Two cases of humans with avian influenza have been confirmed in that region. "Symptoms included conjunctivitis and mild influenza-like illness." Both fully recovered.
H5N2
Japan's Health Ministry said January 2006 that poultry farm workers in Ibaraki prefecture may have been exposed to H5N2 in 2005. The H5N2 antibody titers of paired sera of 13 subjects increased fourfold or more.
H10N7
In 2004 in Egypt, H10N7 was reported for the first time in humans. It caused illness in two infants in Egypt. One child’s father is a poultry merchant.

Read more about this topic:  Influenza A Virus

Famous quotes containing the words human and/or virus:

    The perfect female is a higher type of human being than the perfect male: and also something much more rare.—Zoological science provides the means to support this proposition.
    Friedrich Nietzsche (1844–1900)

    Think of the earth as a living organism that is being attacked by billions of bacteria whose numbers double every forty years. Either the host dies, or the virus dies, or both die.
    Gore Vidal (b. 1925)