Inductance - Inductance and Magnetic Field Energy

Inductance and Magnetic Field Energy

Multiplying the equation for vm above with imdt and summing over m gives the energy transferred to the system in the time interval dt,

\displaystyle
\sum\limits_{m}^{K}i_{m}v_{m}dt=\sum\limits_{m,n=1}^{K}i_{m}L_{m,n}di_{n}
\overset{!}{=}\sum\limits_{n=1}^{K}\frac{\partial W\left( i\right) }{\partial i_{n}}di_{n}.

This must agree with the change of the magnetic field energy W caused by the currents. The integrability condition

requires Lm,n=Ln,m. The inductance matrix Lm,n thus is symmetric. The integral of the energy transfer is the magnetic field energy as a function of the currents,

This equation also is a direct consequence of the linearity of Maxwell's equations. It is helpful to associate changing electric currents with a build-up or decrease of magnet field energy. The corresponding energy transfer requires or generates a voltage. A mechanical analogy in the K=1 case with magnetic field energy (1/2)Li2 is a body with mass M, velocity u and kinetic energy (1/2)Mu2. The rate of change of velocity (current) multiplied with mass (inductance) requires or generates a force (an electrical voltage).

Read more about this topic:  Inductance

Famous quotes containing the words magnetic, field and/or energy:

    We are in great haste to construct a magnetic telegraph from Maine to Texas; but Maine and Texas, it may be, have nothing important to communicate.
    Henry David Thoreau (1817–1862)

    Love to chawnk green apples an’ go swimmin’ in the
    lake.—
    Hate to take the castor-ile they give for belly-ache!
    ‘Most all the time, the whole year round, there ain’t no flies on
    me,
    But jest ‘fore Christmas I’m as good as I kin be!
    —Eugene Field (1850–1895)

    A great number of the disappointments and mishaps of the troubled world are the direct result of literature and the allied arts. It is our belief that no human being who devotes his life and energy to the manufacture of fantasies can be anything but fundamentally inadequate
    Christopher Hampton (b. 1946)