Indeterminate System

An indeterminate system is a system of simultaneous equations (especially linear equations) which has more than one solution. The system may be said to be underspecified. If the system is linear, then the presence of more than one solution implies that there are an infinite number of solutions, but that property does not extend to nonlinear systems.

An indeterminate system is consistent, the latter implying that there exists at least one solution. For a system of linear equations, the number of equations in an indeterminate system could be the same as the number of unknowns, less than the number of unknowns (an underdetermined system), or greater than the number of unknowns (an overdetermined system). Conversely, any of those three cases may or may not be indeterminate.

Read more about Indeterminate System:  Examples, Conditions Giving Rise To Indeterminacy, Finding The Solution Set of An Indeterminate Linear System

Famous quotes containing the word system:

    If mothers are to be successful in achieving their child-rearing goals, they must have the inner freedom to find their own value system and within that system to find what is acceptable to them and what is not. This means leaving behind the anxiety, but also the security, of simplistic good-bad formulations and deciding for themselves what they want to teach their children.
    Elaine Heffner (20th century)