In probability theory and statistics, a sequence or other collection of random variables is independent and identically distributed (i.i.d.) if each random variable has the same probability distribution as the others and all are mutually independent.
The abbreviation i.i.d. is particularly common in statistics (often as iid, sometimes written IID), where observations in a sample are often assumed to be effectively i.i.d. for the purposes of statistical inference. The assumption (or requirement) that observations be i.i.d. tends to simplify the underlying mathematics of many statistical methods (see mathematical statistics and statistical theory). However, in practical applications of statistical modeling the assumption may or may not be realistic. The generalization of exchangeable random variables is often sufficient and more easily met.
The assumption is important in the classical form of the central limit theorem, which states that the probability distribution of the sum (or average) of i.i.d. variables with finite variance approaches a normal distribution.
Note that IID refers to sequences of random variables. "Independent and identically distributed" implies an element in the sequence is independent of the random variables that came before it. In this way, an IID sequence is different from a Markov sequence, where the probability distribution for the nth random variable is a function of the previous random variable in the sequence (for a first order Markov sequence). An IID sequence does not imply the probabilities for all elements of the sample space or event space must be the same. For example, repeated throws of loaded dice will produce a sequence that is IID, despite the outcomes being biased.
Famous quotes containing the words independent and, independent, random and/or variables:
“I have defeated them all.... I was left with some money to battle with the world when quite young, and at the present time have much to feel proud of.... The Lord gave me talent, and I know I have done good with it.... For my brains have made me quite independent and without the help of any man.”
—Harriet A. Brown, U.S. inventor and educator. As quoted in Feminine Ingenuity, ch. 8, by Anne L. MacDonald (1992)
“The dignity and stability of government in all its branches, the morals of the people, and every blessing of society, depend so much upon an upright and skilful administration of justice, that the judicial power ought to be distinct from both the legislative and executive, and independent upon both, that so it may be a check upon both, as both should be checks upon that.”
—Thomas Jefferson (17431826)
“There is a potential 4-6 percentage point net gain for the President [George Bush] by replacing Dan Quayle on the ticket with someone of neutral stature.”
—Mary Matalin, U.S. Republican political advisor, author, and James Carville b. 1946, U.S. Democratic political advisor, author. Alls Fair: Love, War, and Running for President, p. 205, Random House (1994)
“The variables of quantification, something, nothing, everything, range over our whole ontology, whatever it may be; and we are convicted of a particular ontological presupposition if, and only if, the alleged presuppositum has to be reckoned among the entities over which our variables range in order to render one of our affirmations true.”
—Willard Van Orman Quine (b. 1908)