Regularized Gamma Functions and Poisson Random Variables
Two related functions are the regularized Gamma functions:
is the cumulative distribution function for Gamma random variables with shape parameter and scale parameter 1.
When is an integer, is the cumulative distribution function for Poisson random variables: If is a random variable then
This formula can be derived by repeated integration by parts.
Read more about this topic: Incomplete Gamma Function
Famous quotes containing the words functions, random and/or variables:
“If photography is allowed to stand in for art in some of its functions it will soon supplant or corrupt it completely thanks to the natural support it will find in the stupidity of the multitude. It must return to its real task, which is to be the servant of the sciences and the arts, but the very humble servant, like printing and shorthand which have neither created nor supplanted literature.”
—Charles Baudelaire (18211867)
“And catch the gleaming of a random light,
That tells me that the ship I seek is passing, passing.”
—Paul Laurence Dunbar (18721906)
“The variables of quantification, something, nothing, everything, range over our whole ontology, whatever it may be; and we are convicted of a particular ontological presupposition if, and only if, the alleged presuppositum has to be reckoned among the entities over which our variables range in order to render one of our affirmations true.”
—Willard Van Orman Quine (b. 1908)