Incomplete Gamma Function - Regularized Gamma Functions and Poisson Random Variables

Regularized Gamma Functions and Poisson Random Variables

Two related functions are the regularized Gamma functions:

is the cumulative distribution function for Gamma random variables with shape parameter and scale parameter 1.

When is an integer, is the cumulative distribution function for Poisson random variables: If is a random variable then

 Pr(X<s) = \sum_{i<s} e^{-\lambda} \frac{\lambda^i}{i!} = \frac{\Gamma(s,\lambda)}{\Gamma(s)} = Q(s,\lambda).

This formula can be derived by repeated integration by parts.

Read more about this topic:  Incomplete Gamma Function

Famous quotes containing the words functions, random and/or variables:

    Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others’ reasons for action, or the basis of others’ emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.
    Terri Apter (20th century)

    ... the random talk of people who have no chance of immortality and thus can speak their minds out has a setting, often, of lights, streets, houses, human beings, beautiful or grotesque, which will weave itself into the moment for ever.
    Virginia Woolf (1882–1941)

    Science is feasible when the variables are few and can be enumerated; when their combinations are distinct and clear. We are tending toward the condition of science and aspiring to do it. The artist works out his own formulas; the interest of science lies in the art of making science.
    Paul Valéry (1871–1945)