Statement of The Theorem
Let f : Rn+m → Rm be a continuously differentiable function. We think of Rn+m as the Cartesian product Rn × Rm, and we write a point of this product as (x,y) = (x1, ..., xn, y1, ..., ym). Starting from the given function f, our goal is to construct a function g : Rn → Rm whose graph (x, g(x)) is precisely the set of all (x, y) such that f(x, y) = 0.
As noted above, this may not always be possible. We will therefore fix a point (a,b) = (a1, ..., an, b1, ..., bm) which satisfies f(a, b) = 0, and we will ask for a g that works near the point (a, b). In other words, we want an open set U of Rn, an open set V of Rm, and a function g : U → V such that the graph of g satisfies the relation f = 0 on U × V. In symbols,
To state the implicit function theorem, we need the Jacobian matrix of, which is the matrix of the partial derivatives of . Abbreviating (a1, ..., an, b1, ..., bm) to (a, b), the Jacobian matrix is
where is the matrix of partial derivatives in the 's and is the matrix of partial derivatives in the 's. The implicit function theorem says that if is an invertible matrix, then there are, and as desired. Writing all the hypotheses together gives the following statement.
- Let f : Rn+m → Rm be a continuously differentiable function, and let Rn+m have coordinates (x, y). Fix a point (a1,...,an,b1,...,bm) = (a,b) with f(a,b)=c, where c∈ Rm. If the matrix is invertible, then there exists an open set U containing a, an open set V containing b, and a unique continuously differentiable function g:U → V such that
Read more about this topic: Implicit Function Theorem
Famous quotes containing the words statement of, statement and/or theorem:
“Eloquence must be grounded on the plainest narrative. Afterwards, it may warm itself until it exhales symbols of every kind and color, speaks only through the most poetic forms; but first and last, it must still be at bottom a biblical statement of fact.”
—Ralph Waldo Emerson (18031882)
“A sentence is made up of words, a statement is made in words.... Statements are made, words or sentences are used.”
—J.L. (John Langshaw)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)