Hyperelliptic Curve - Occurrence and Applications

Occurrence and Applications

All curves of genus 2 are hyperelliptic, but for genus ≥ 3 the generic curve is not hyperelliptic. This is seen heuristically by a moduli space dimension check. Counting constants, with n = 2g + 2, the collection of n points subject to the action of the automorphisms of the projective line has (2g + 2) − 3 degrees of freedom, which is less than 3g − 3, the number of moduli of a curve of genus g, unless g is 2. Much more is known about the hyperelliptic locus in the moduli space of curves or abelian varieties, though it is harder to exhibit general non-hyperelliptic curves with simple models. One geometric characterization of hyperelliptic curves is via Weierstrass points. More detailed geometry of non-hyperelliptic curves is read from the theory of canonical curves, the canonical mapping being 2-to-1 on hyperelliptic curves but 1-to-1 otherwise for g > 2. Trigonal curves are those that correspond to taking a cube root, rather than a square root, of a polynomial.

The definition by quadratic extensions of the rational function field works for fields in general except in characteristic 2; in all cases the geometric definition as a ramified double cover of the projective line is available, if it is assumed to be separable.

Hyperelliptic curves can be used in hyperelliptic curve cryptography for cryptosystems based on the discrete logarithm problem.

Hyperelliptic curves also appear composing entire connected components of certain strata of the moduli space of Abelian differentials.

Read more about this topic:  Hyperelliptic Curve

Famous quotes containing the word occurrence:

    One is absolutely sickened, not by the crimes that the wicked have committed, but by the punishments that the good have inflicted; and a community is infinitely more brutalised by the habitual employment of punishment than it is by the occasional occurrence of crime.
    Oscar Wilde (1854–1900)