Hydrogen Bond - Hydrogen Bonds in Water

Hydrogen Bonds in Water

The most ubiquitous, and perhaps simplest, example of a hydrogen bond is found between water molecules. In a discrete water molecule, there are two hydrogen atoms and one oxygen atom. Two molecules of water can form a hydrogen bond between them; the simplest case, when only two molecules are present, is called the water dimer and is often used as a model system. When more molecules are present, as is the case of liquid water, more bonds are possible because the oxygen of one water molecule has two lone pairs of electrons, each of which can form a hydrogen bond with a hydrogen on another water molecule. This can repeat such that every water molecule is H-bonded with up to four other molecules, as shown in the figure (two through its two lone pairs, and two through its two hydrogen atoms). Hydrogen bonding strongly affects the crystal structure of ice, helping to create an open hexagonal lattice. The density of ice is less than water at the same temperature; thus, the solid phase of water floats on the liquid, unlike most other substances. Liquid water's high boiling point is due to the high number of hydrogen bonds each molecule can form relative to its low molecular mass. Owing to the difficulty of breaking these bonds, water has a very high boiling point, melting point, and viscosity compared to otherwise similar liquids not conjoined by hydrogen bonds. Water is unique because its oxygen atom has two lone pairs and two hydrogen atoms, meaning that the total number of bonds of a water molecule is up to four. For example, hydrogen fluoride—which has three lone pairs on the F atom but only one H atom—can form only two bonds; (ammonia has the opposite problem: three hydrogen atoms but only one lone pair).

H−F…H−F…H−F

The exact number of hydrogen bonds formed by a molecule of liquid water fluctuates with time and depends on the temperature. The number of hydrogen bonds may also be affected by the presence of oxygen diffusion-enhancing compounds such as trans sodium crocetinate (TSC), which have been shown to encourage the formation of hydrogen bonds. From TIP4P liquid water simulations at 25 °C, it was estimated that each water molecule participates in an average of 3.59 hydrogen bonds. At 100 °C, this number decreases to 3.24 due to the increased molecular motion and decreased density, while at 0 °C, the average number of hydrogen bonds increases to 3.69. A more recent study found a much smaller number of hydrogen bonds: 2.357 at 25 °C. The differences may be due to the use of a different method for defining and counting the hydrogen bonds.

Where the bond strengths are more equivalent, one might instead find the atoms of two interacting water molecules partitioned into two polyatomic ions of opposite charge, specifically hydroxide (OH−) and hydronium (H3O+). (Hydronium ions are also known as 'hydroxonium' ions.)

H−O− H3O+

Indeed, in pure water under conditions of standard temperature and pressure, this latter formulation is applicable only rarely; on average about one in every 5.5 × 108 molecules gives up a proton to another water molecule, in accordance with the value of the dissociation constant for water under such conditions. It is a crucial part of the uniqueness of water.

Because water forms hydrogen bonds with the donors and acceptors on solutes dissolved within it, it inhibits the formation of a hydrogen bond between two molecules of those solutes or the formation of intramolecular hydrogen bonds within those solutes through competition for their donors and acceptors. Consequently, hydrogen bonds between or within solute molecules dissolved in water are almost always unfavorable relative to hydrogen bonds between water and the donors and acceptors for hydrogen bonds on those solutes.

Read more about this topic:  Hydrogen Bond

Famous quotes containing the words hydrogen, bonds and/or water:

    All you of Earth are idiots!... First was your firecracker, a harmless explosive. Then your hand grenade. They begin to kill your own people a few at a time. Then the bomb. Then a larger bomb, many people are killed at one time. Then your scientists stumbled upon the atom bomb—split the atom. Then the hydrogen bomb, where you actually explode the air itself.
    Edward D. Wood, Jr. (1922–1978)

    Oh! I have slipped the surly bonds of earth,
    And danced the skies on laughter-silvered wings ...
    And while with silent lifting mind I’ve trod
    The high, untrespassed sanctity of space,
    Put out my hand and touched the face of God.
    John Gillespie Magee (c. 1922–1941)

    What’s water but the generated soul?
    William Butler Yeats (1865–1939)