The Idea of A Proof and Construction of The Hurwitz Surfaces
By the uniformization theorem, any hyperbolic surface X – i.e., the Gaussian curvature of X is equal to negative one at every point – is covered by the hyperbolic plane. The conformal mappings of the surface correspond to orientation-preserving automorphisms of the hyperbolic plane. By the Gauss-Bonnet theorem, the area of the surface is
- A(X) = − 2π χ(X) = 4π(g − 1).
In order to make the automorphism group G of X as large as possible, we want the area of its fundamental domain D for this action to be as small as possible. If the fundamental domain is a triangle with the vertex angles π/p, π/q and π/r, defining a tiling of the hyperbolic plane, then p, q, and r are integers greater than one, and the area is
- A(D) = π(1 − 1/p − 1/q − 1/r).
Thus we are asking for integers which make the expression
- 1 − 1/p − 1/q − 1/r
strictly positive and as small as possible. A remarkable fact is that this minimal value is 1/42, and
- 1 − 1/2 − 1/3 − 1/7 = 1/42
gives a unique (up to permutation) triple of such integers. This would indicate that the order |G| of the automorphism group is bounded by
- A(X)/A(D) ≤ 168(g − 1).
However, a more delicate reasoning shows that this is an overestimate by the factor of two, because the group G can contain orientation-reversing transformations. For the orientation-preserving conformal automorphisms the bound is 84(g − 1).
Read more about this topic: Hurwitz's Automorphisms Theorem
Famous quotes containing the words idea, proof, construction and/or surfaces:
“The idea which man forms of beauty imprints itself throughout his attire, rumples or stiffens his garments, rounds off or aligns his gestures, and, finally, even subtly penetrates the features of his face.”
—Charles Baudelaire (18211867)
“To cease to admire is a proof of deterioration.”
—Charles Horton Cooley (18641929)
“Theres no art
To find the minds construction in the face:
He was a gentleman on whom I built
An absolute trust.”
—William Shakespeare (15641616)
“But ice-crunching and loud gum-chewing, together with drumming on tables, and whistling the same tune seventy times in succession, because they indicate an indifference on the part of the perpetrator to the rest of the world in general, are not only registered on the delicate surfaces of the brain but eat little holes in it until it finally collapses or blows up.”
—Robert Benchley (18891945)