History of Electrochemistry - Rise of Electrochemistry As Branch of Chemistry

Rise of Electrochemistry As Branch of Chemistry

In 1800, English chemists William Nicholson and Johann Wilhelm Ritter succeeded in separating water into hydrogen and oxygen by electrolysis. Soon thereafter, Ritter discovered the process of electroplating. He also observed that the amount of metal deposited and the amount of oxygen produced during an electrolytic process depended on the distance between the electrodes. By 1801 Ritter had observed thermoelectric currents, which anticipated the discovery of thermoelectricity by Thomas Johann Seebeck.

In 1802, William Cruickshank designed the first electric battery capable of mass production. Like Volta, Cruickshank arranged square copper plates, which he soldered at their ends, together with plates of zinc of equal size. These plates were placed into a long rectangular wooden box which was sealed with cement. Grooves inside the box held the metal plates in position. The box was then filled with an electrolyte of brine, or watered down acid. This flooded design had the advantage of not drying out with use and provided more energy than Volta's arrangement, which used brine-soaked papers between the plates.

In the quest for a better production of platinum metals, two scientists, William Hyde Wollaston and Smithson Tennant, worked together to design an efficient electrochemical technique to refine or purify platinum. Tennant ended up discovering the elements iridium and osmium. Wollaston's effort, in turn, led him to the discovery of the metals palladium in 1803 and rhodium in 1804.

Wollaston made improvements to the galvanic battery (named after Galvani) in the 1810s. In Wollaston's battery, the wooden box was replaced with an earthenware vessel, and a copper plate was bent into a U-shape, with a single plate of zinc placed in the center of the bent copper. The zinc plate was prevented from making contact with the copper by dowels (pieces) of cork or wood. In his single cell design, the U-shaped copper plate was welded to a horizontal handle for lifting the copper and zinc plates out out the electrolyte when the battery was not in use.

In 1809, Samuel Thomas von Soemmering developed the first telegraph. He used a device with 26 wires (1 wire for each letter of the German alphabet) terminating in a container of acid. At the sending station, a key, which completed a circuit with a battery, was connected as required to each of the line wires. The passage of current caused the acid to decompose chemically, and the message was read by observing at which of the terminals the bubbles of gas appeared. This is how he was able to send messages, one letter at a time.

Humphry Davy's work with electrolysis led to conclusion that the production of electricity in simple electrolytic cells resulted from chemical reactions between the electrolyte and the metals, and occurred between substances of opposite charge. He reasoned that the interactions of electrical currents with chemicals offered the most likely means of decomposing all substances to their basic elements. These views were explained in 1806 in his lecture On Some Chemical Agencies of Electricity, for which he received the Napoleon Prize from the Institut de France in 1807 (despite the fact that England and France were at war at the time). This work led directly to the isolation of sodium and potassium from their common compounds and of the alkaline earth metals from theirs in 1808.

Hans Christian Ørsted's discovery of the magnetic effect of electrical currents in 1820 was immediately recognised as an important advance, although he left further work on electromagnetism to others. André-Marie Ampère quickly repeated Ørsted's experiment, and formulated them mathematically (which became Ampère's law) . Ørsted also discovered that not only is a magnetic needle deflected by the electric current, but that the live electric wire is also deflected in a magnetic field, thus laying the foundation for the construction of an electric motor. Ørsted's discovery of piperine, one of the pungent components of pepper, was an important contribution to chemistry, as was his preparation of aluminium in 1825.

During the 1820s, Robert Hare developed the Deflagrator, a form of voltaic battery having large plates used for producing rapid and powerful combustion. A modified form of this apparatus was employed in 1823 in volatilising and fusing carbon. It was with these batteries that the first use of voltaic electricity for blasting under water was made in 1831.

In 1821, the Estonian-German physicist, Thomas Johann Seebeck, demonstrated the electrical potential in the juncture points of two dissimilar metals when there is a temperature difference between the joints. He joined a copper wire with a bismuth wire to form a loop or circuit. Two junctions were formed by connecting the ends of the wires to each other. He then accidentally discovered that if he heated one junction to a high temperature, and the other junction remained at room temperature, a magnetic field was observed around the circuit.

He did not recognise that an electrical current was being generated when heat was applied to a bi-metal junction. He used the term "thermomagnetic currents" or "thermomagnetism" to express his discovery. Over the following two years, he reported on his continuing observations to the Prussian Academy of Sciences, where he described his observation as "the magnetic polarization of metals and ores produced by a temperature difference." This Seebeck effect became the basis of the thermocouple, which is still considered the most accurate measurement of temperature today. The converse Peltier effect was seen over a decade later when a current was run through a circuit with two dissimilar metals, resulting in a temperature difference between the metals.

In 1827 German scientist Georg Ohm expressed his law in his famous book Die galvanische Kette, mathematisch bearbeitet (The Galvanic Circuit Investigated Mathematically) in which he gave his complete theory of electricity.

In 1829 Antoine-César Becquerel developed the "constant current" cell, forerunner of the well-known Daniell cell. When this acid-alkali cell was monitored by a galvanometer, current was found to be constant for an hour, the first instance of "constant current". He applied the results of his study of thermoelectricity to the construction of an electric thermometer, and measured the temperatures of the interior of animals, of the soil at different depths, and of the atmosphere at different heights. He helped validate Faraday's laws and conducted extensive investigations on the electroplating of metals with applications for metal finishing and metallurgy. Solar cell technology dates to 1839 when Becquerel observed that shining light on an electrode submerged in a conductive solution would create an electric current.

Michael Faraday began, in 1832, what promised to be a rather tedious attempt to prove that all electricities had precisely the same properties and caused precisely the same effects. The key effect was electrochemical decomposition. Voltaic and electromagnetic electricity posed no problems, but static electricity did. As Faraday delved deeper into the problem, he made two startling discoveries. First, electrical force did not, as had long been supposed, act at a distance upon molecules to cause them to dissociate. It was the passage of electricity through a conducting liquid medium that caused the molecules to dissociate, even when the electricity merely discharged into the air and did not pass through a "pole" or "center of action" in a voltaic cell. Second, the amount of the decomposition was found to be related directly to the amount of electricity passing through the solution.

These findings led Faraday to a new theory of electrochemistry. The electric force, he argued, threw the molecules of a solution into a state of tension. When the force was strong enough to distort the forces that held the molecules together so as to permit the interaction with neighbouring particles, the tension was relieved by the migration of particles along the lines of tension, the different parts of atoms migrating in opposite directions. The amount of electricity that passed, then, was clearly related to the chemical affinities of the substances in solution. These experiments led directly to Faraday's two laws of electrochemistry which state:

  • The amount of a substance deposited on each electrode of an electrolytic cell is directly proportional to the amount of electricity passing through the cell.
  • The quantities of different elements deposited by a given amount of electricity are in the ratio of their chemical equivalent weights.

William Sturgeon built an electric motor in 1832 and invented the commutator, a ring of metal-bristled brushes which allow the spinning armature to maintain contact with the electrical current and changed the alternating current to a pulsating direct current. He also improved the voltaic battery and worked on the theory of thermoelectricity.

Hippolyte Pixii, a French instrument maker, constructed the first dynamo in 1832 and later built a direct current dynamo using the commutator. This was the first practical mechanical generator of electrical current that used concepts demonstrated by Faraday.

John Daniell began experiments in 1835 in an attempt to improve the voltaic battery with its problems of being unsteady and a weak source of electrical current. His experiments soon led to remarkable results. In 1836, he invented a primary cell in which hydrogen was eliminated in the generation of the electricity. Daniell had solved the problem of polarization. In his laboratory he had learned to alloy the amalgamated zinc of Sturgeon with mercury. His version was the first of the two-fluid class battery and the first battery that produced a constant reliable source of electrical current over a long period of time.

William Grove produced the first fuel cell in 1839. He based his experiment on the fact that sending an electric current through water splits the water into its component parts of hydrogen and oxygen. So, Grove tried reversing the reaction—combining hydrogen and oxygen to produce electricity and water. Eventually the term fuel cell was coined in 1889 by Ludwig Mond and Charles Langer, who attempted to build the first practical device using air and industrial coal gas. He also introduced a powerful battery at the annual meeting of the British Association for the Advancement of Science in 1839. Grove's first cell consisted of zinc in diluted sulfuric acid and platinum in concentrated nitric acid, separated by a porous pot. The cell was able to generate about 12 amperes of current at about 1.8 volts. This cell had nearly double the voltage of the first Daniell cell. Grove's nitric acid cell was the favourite battery of the early American telegraph (1840–1860), because it offered strong current output.

As telegraph traffic increased, it was found that the Grove cell discharged poisonous nitrogen dioxide gas. As telegraphs became more complex, the need for a constant voltage became critical and the Grove device was limited (as the cell discharged, nitric acid was depleted and voltage was reduced). By the time of the American Civil War, Grove's battery had been replaced by the Daniell battery. In 1841 Robert Bunsen replaced the expensive platinum electrode used in Grove's battery with a carbon electrode. This led to large scale use of the "Bunsen battery" in the production of arc-lighting and in electroplating.

Wilhelm Weber developed, in 1846, the electrodynamometer, in which a current causes a coil suspended within another coil to turn when a current is passed through both. In 1852, Weber defined the absolute unit of electrical resistance (which was named the ohm after Georg Ohm). Weber's name is now used as a unit name to describe magnetic flux, the weber.

German physicist Johann Hittorf concluded that ion movement caused electric current. In 1853 Hittorf noticed that some ions traveled more rapidly than others. This observation led to the concept of transport number, the rate at which particular ions carried the electric current. Hittorf measured the changes in the concentration of electrolysed solutions, computed from these the transport numbers (relative carrying capacities) of many ions, and, in 1869, published his findings governing the migration of ions.

In 1866, Georges Leclanché patented a new battery system, which was immediately successful. Leclanché's original cell was assembled in a porous pot. The positive electrode (the cathode) consisted of crushed manganese dioxide with a little carbon mixed in. The negative pole (anode) was a zinc rod. The cathode was packed into the pot, and a carbon rod was inserted to act as a current collector. The anode and the pot were then immersed in an ammonium chloride solution. The liquid acted as the electrolyte, readily seeping through the porous pot and making contact with the cathode material. Leclanché's "wet" cell became the forerunner to the world's first widely used battery, the zinc-carbon cell.

Read more about this topic:  History Of Electrochemistry

Famous quotes containing the words rise, branch and/or chemistry:

    May not the complaint, that common people are above their station, often take its rise in the fact of uncommon people being below theirs?
    Charles Dickens (1812–1870)

    The optimist proclaims that we live in the best of all possible worlds; and the pessimist fears this is true.
    —James Branch Cabell (1879–1958)

    For me chemistry represented an indefinite cloud of future potentialities which enveloped my life to come in black volutes torn by fiery flashes, like those which had hidden Mount Sinai. Like Moses, from that cloud I expected my law, the principle of order in me, around me, and in the world.... I would watch the buds swell in spring, the mica glint in the granite, my own hands, and I would say to myself: “I will understand this, too, I will understand everything.”
    Primo Levi (1919–1987)