History of Biotechnology - Genetic Engineering

Genetic Engineering

The origins of biotechnology culminated with the birth of genetic engineering. There were two key events that have come to be seen as scientific breakthroughs beginning the era that would unite genetics with biotechnology. One was the 1953 discovery of the structure of DNA, by Watson and Crick, and the other was the 1973 discovery by Cohen and Boyer of a recombinant DNA technique by which a section of DNA was cut from the plasmid of an E. coli bacterium and transferred into the DNA of another. This approach could, in principle, enable bacteria to adopt the genes and produce proteins of other organisms, including humans. Popularly referred to as "genetic engineering," it came to be defined as the basis of new biotechnology.

Genetic engineering proved to be a topic that thrust biotechnology into the public scene, and the interaction between scientists, politicians, and the public defined the work that was accomplished in this area. Technical developments during this time were revolutionary and at times frightening. In December 1967, the first heart transplant by Christian Barnard reminded the public that the physical identity of a person was becoming increasingly problematic. While poetic imagination had always seen the heart at the center of the soul, now there was the prospect of individuals being defined by other people's hearts. During the same month, Arthur Kornberg announced that he had managed to biochemically replicate a viral gene. "Life had been synthesized," said the head of the National Institutes of Health. Genetic engineering was now on the scientific agenda, as it was becoming possible to identify genetic characteristics with diseases such as beta thalassemia and sickle-cell anemia.

Responses to scientific achievements were colored by cultural skepticism. Scientists and their expertise were looked upon with suspicion. In 1968, an immensely popular work, The Biological Time Bomb, was written by the British journalist Gordon Rattray Taylor. The author's preface saw Kornberg's discovery of replicating a viral gene as a route to lethal doomsday bugs. The publisher's blurb for the book warned that within ten years, "You may marry a semi-artificial man or woman…choose your children's sex…tune out pain…change your memories…and live to be 150 if the scientific revolution doesn’t destroy us first." The book ended with a chapter called "The Future – If Any." While it is rare for current science to be represented in the movies, in this period of "Star Trek", science fiction and science fact seemed to be converging. "Cloning" became a popular word in the media. Woody Allen satirized the cloning of a person from a nose in his 1973 movie Sleeper, and cloning Adolf Hitler from surviving cells was the theme of the 1976 novel by Ira Levin, The Boys from Brazil.

In response to these public concerns, scientists, industry, and governments increasingly linked the power of recombinant DNA to the immensely practical functions that biotechnology promised. One of the key scientific figures that attempted to highlight the promising aspects of genetic engineering was Joshua Lederberg, a Stanford professor and Nobel laureate. While in the 1960s "genetic engineering" described eugenics and work involving the manipulation of the human genome, Lederberg stressed research that would involve microbes instead. Lederberg emphasized the importance of focusing on curing living people. Lederberg's 1963 paper, "Biological Future of Man" suggested that, while molecular biology might one day make it possible to change the human genotype, "what we have overlooked is euphenics, the engineering of human development." Lederberg constructed the word "euphenics" to emphasize changing the phenotype after conception rather than the genotype which would affect future generations.

With the discovery of recombinant DNA by Cohen and Boyer in 1973, the idea that genetic engineering would have major human and societal consequences was born. In July 1974, a group of eminent molecular biologists headed by Paul Berg wrote to Science suggesting that the consequences of this work were so potentially destructive that there should be a pause until its implications had been thought through. This suggestion was explored at a meeting in February 1975 at California's Monterey Peninsula, forever immortalized by the location, Asilomar. Its historic outcome was an unprecedented call for a halt in research until it could be regulated in such a way that the public need not be anxious, and it led to a 16-month moratorium until National Institutes of Health (NIH) guidelines were established.

Joshua Lederberg was the leading exception in emphasizing, as he had for years, the potential benefits. At Asilomar, in an atmosphere favoring control and regulation, he circulated a paper countering the pessimism and fears of misuses with the benefits conferred by successful use. He described "an early chance for a technology of untold importance for diagnostic and therapeutic medicine: the ready production of an unlimited variety of human proteins. Analogous applications may be foreseen in fermentation process for cheaply manufacturing essential nutrients, and in the improvement of microbes for the production of antibiotics and of special industrial chemicals." In June 1976, the 16-month moratorium on research expired with the Director's Advisory Committee (DAC) publication of the NIH guidelines of good practice. They defined the risks of certain kinds of experiments and the appropriate physical conditions for their pursuit, as well as a list of things too dangerous to perform at all. Moreover, modified organisms were not to be tested outside the confines of a laboratory or allowed into the environment.

Atypical as Lederberg was at Asilomar, his optimistic vision of genetic engineering would soon lead to the development of the biotechnology industry. Over the next two years, as public concern over the dangers of recombinant DNA research grew, so too did interest in its technical and practical applications. Curing genetic diseases remained in the realms of science fiction, but it appeared that producing human simple proteins could be good business. Insulin, one of the smaller, best characterized and understood proteins, had been used in treating type 1 diabetes for a half century. It had been extracted from animals in a chemically slightly different form from the human product. Yet, if one could produce synthetic human insulin, one could meet an existing demand with a product whose approval would be relatively easy to obtain from regulators. In the period 1975 to 1977, synthetic "human" insulin represented the aspirations for new products that could be made with the new biotechnology. Microbial production of synthetic human insulin was finally announced in September 1978 and was produced by a startup company, Genentech., although that company did not commercialize the product themselves, instead, it licensed the production method to Eli Lilly and Company.

The radical shift in the connotation of "genetic engineering" from an emphasis on the inherited characteristics of people to the commercial production of proteins and therapeutic drugs was nurtured by Joshua Lederberg. His broad concerns since the 1960s had been stimulated by enthusiasm for science and its potential medical benefits. Countering calls for strict regulation, he expressed a vision of potential utility. Against a belief that new techniques would entail unmentionable and uncontrollable consequences for humanity and the environment, a growing consensus on the economic value of recombinant DNA emerged.

Read more about this topic:  History Of Biotechnology

Famous quotes containing the words genetic and/or engineering:

    Man is not merely the sum of his masks. Behind the shifting face of personality is a hard nugget of self, a genetic gift.... The self is malleable but elastic, snapping back to its original shape like a rubber band. Mental illness is no myth, as some have claimed. It is a disturbance in our sense of possession of a stable inner self that survives its personae.
    Camille Paglia (b. 1947)

    Mining today is an affair of mathematics, of finance, of the latest in engineering skill. Cautious men behind polished desks in San Francisco figure out in advance the amount of metal to a cubic yard, the number of yards washed a day, the cost of each operation. They have no need of grubstakes.
    Merle Colby, U.S. public relief program (1935-1943)