High Energy Astronomy Observatory 1 - A4: Hard X-Ray / Low-Energy Gamma-ray Experiment

A4: Hard X-Ray / Low-Energy Gamma-ray Experiment

The A4, or Hard X-ray / Low Energy Gamma-ray Experiment, used sodium iodide (NaI) scintillation counters to cover the energy range from about 20 keV to 10 MeV. It consisted of seven clustered modules, of three distinct designs, in a roughly hexagonal array. Each detector was actively shielded by surrounding CsI scintillators, in active-anti-coincidence, so that an extraneous particle or gamma-ray event from the side or rear would be vetoed electronically, and rejected. (It was discovered in early balloon flight by experimenters in the 1960s that passive collimators or shields, made of materials such as lead, actually increase the undesired background rate, due to the intense showers of secondary particles and photons produced by the extremely high energy (GeV) particles characteristic of the space radiation environment.) A plastic anti-coincidence scintillation shield, essentially transparent to gamma-ray photons, protected the detectors from high-energy charged particles entering from the front.

For all seven modules, the unwanted background effects of particles or photons entering from the rear was suppressed by a "phoswich" design, in which the active NaI detecting element was optically coupled to a layer of CsI on its rear surface, which was in turn optically coupled to a single photomultiplier tube for each of the seven units. Because the NaI has a much faster response time (~0.25 μsec) than the CsI (~1 μsec), electronic pulse shape discriminators could distinguish good events××3 in NaI in the NaI from mixed events accompanied by a simultaneous interaction in the CsI.

The largest, or High Energy Detector (HED), occupied the central position and covered the upper range from ~120 keV to 10 MeV, with a field-of-view (FOV) collimated to 37° FWHM. Its NaI detector was 5 in (12.7 cm) in diameter by 3 in (7.62 cm) thick. The extreme penetrating power of photons in this energy range made it necessary to operate the HED in electronic anti-coincidence with the surrounding CsI and also the six other detectors of the hexagon.

Two Low Energy Detectors (LEDs) were located in positions 180° apart on opposite side of the hexagon. They had thin ~3 mm thick NaI detectors, also 5 in (12.7 cm) in diameter, covering the energy range from ~10—200 keV. Their FOV was defined to fan-shaped beams of 1.7° x 20° FWHM by passive, parallel slat-plate collimators. The slats of the two LEDs were inclined to ±30° to the nominal HEAO scanning direction, crossing each other at 60°. Thus, working together, they covered a wide field of view, but could localize celestial sources with a precision determined by their 1.7° narrow fields.

The four Medium Energy Detectors (MEDs), with a nominal energy range of 80 keV — 3 MeV, had 3 in (7.62 cm) dia by 1 in (2.54 cm) thick NaI detector crystals, and occupied the four remaining positions in the hexagon of modules. They had circular FOVs with a 17° FWHM.

The primary data from A4 consisted of "event-by-event" telemetry, listing each good (i.e., un-vetoed) event in the NaI detectors. The experiment had the flexibility to tag each event with its pulse height (proportional to its energy), and a one or two byte time tag, allowing precision timing of objects such as gamma-ray bursts and pulsars.

Results of the experiment included a catalog of the positions and intensities of hard X-ray (10—200 keV) sources, a strong observational basis for extremely strong magnetic fields (of order 1013 G) on the rotating neutron stars associated with Her X-1 and 4U 0115+634, a definitive diffuse component spectrum between 13 and 200 keV, discovery of the power-law shape of the Cygnus X-1 power density spectrum, and discovery of slow intensity cycles in the X-Ray sources SMC X-1 and LMC X-4, resulting in approximately 15 Ph.D theses and ~100 scientific publications.

The A4 instrument was provided and managed by the University of California at San Diego, under the direction of Prof. Laurence E. Peterson, in collaboration with the X-ray group at MIT, where the initial A4 data reduction was performed under the direction of Prof. Walter H. G. Lewin.

Read more about this topic:  High Energy Astronomy Observatory 1

Famous quotes containing the words hard and/or experiment:

    Language is filled
    with words for deprivation
    images so familiar
    it is hard to crack language open
    into that other country
    the country of being.
    Susan Griffin (b. 1943)

    The man who invented Eskimo Pie made a million dollars, so one is told, but E.E. Cummings, whose verse has been appearing off and on for three years now, and whose experiments should not be more appalling to those interested in poetry than the experiment of surrounding ice-cream with a layer of chocolate was to those interested in soda fountains, has hardly made a dent in the doughy minds of our so-called poetry lovers.
    John Dos Passos (1896–1970)